
27-1

27 Designing Your
Own Program

27.1 Using API Functions..27-2

27.2 Device Access APIs ..27-20

27.3 Cache Buffer Control APIs ..27-41

27.4 Queuing Access Control APIs...27-47

27.5 System APIs..27-50

27.6 SRAM Data Access APIs ..27-57

27.7 CF Card / SD Card APIs ...27-61

27.8 Binary Date and Time / Text Display Conversion..27-76

27.9 Other APIs...27-80

27.10 Precautions for Using APIs ...27-85

27.11 Using APIs (Examples) ...27-97

Using API Functions

Pro-Server EX Reference Manual 27-2

27.1 Using API Functions

Reading and writing a Device/PLC
Single-handle functions (27.1.1 Single-/Multi-Handle Functions)

 Read API

 Cache type (27.1.2 Cache/Direct Type)

 Direct type (27.1.2 Cache/Direct Type)

 Write API

 Direct type (27.1.2 Cache/Direct Type)

 With cache refresh after writing

 (27.1.2 Cache/Direct Type)

PLC communication with multiple devices
Multi-handle functions (27.1.1 Single-/Multi-Handle Functions)

 Read API

 Cache type (27.1.2 Cache/Direct Type)

 Direct type (27.1.2 Cache/Direct Type)

 Write API

 Direct type (27.1.2 Cache/Direct Type)

 With cache refresh after writing

 (27.1.2 Cache/Direct Type)

For effective communication
- Group symbol access (27.1.4 Group Access)

- Queuing access (27.1.5 Queuing Access)

Other functions
- System APIs (→27.1.7 System APIs)

- SRAM Data Access APIs (→27.1.8 SRAM Data Access APIs)

- CF Card and SD Card APIs (→27.1.9 CF Card and SD Card APIs)

- Other APIs (→27.9 Other APIs)

Using API Functions

Pro-Server EX Reference Manual 27-3

27.1.1 Single-/Multi-Handle Functions

Single-Handle APIs

This API is used for sequential communications with target devices. During a call of an API, you cannot call

another API.

To call an API, however, you need not perform a troublesome procedure such as 'Pro-Server EX' access handle

acquisition.

Multi-Handle APIs

This API enables simultaneous use of single-handle API features for multiple devices. For differentiation from

Single-Handle APIs, Multi-Handle APIs are identified with a capital "M" at the end of each API name.

For example, a Multi-Handle API that provides the same feature as a Single-Handle API "ReadDeviceVariant()"

is named "ReadDeviceVariantM()".

Multi-Handle APIs can be used for multi-thread applications, or for simultaneous access to multiple Devices/

PLCs.

Using API Functions

Pro-Server EX Reference Manual 27-4

27.1.2 Cache/Direct Type

Cache Read

When multiple applications send reading requests to the same device/PLC, it takes time if 'Pro-Server EX'

accesses the Device/PLC to meet individual applications' reading request one by one.

With the Cache Read feature, however, when two applications A and B send reading requests to the same Device/

PLC, 'Pro-Server EX' reads data from the Device/PLC according to the request of Application A first, stores the

read data into the internal cache buffer, and sends the data to Application A in response to the reading request.

Then, according to the request of Application B, 'Pro-Server EX' sends the data stored in the cache buffer to

Application B, since the response data are already stored together with the data for Application A.

'Pro-Server EX' also provides cache buffer control APIs. Refer to "27.3 Cache Buffer Control APIs" for more

details.

Application A

Pro-Server EX

Cache Buffer

Application B

Using API Functions

Pro-Server EX Reference Manual 27-5

Direct Read

This feature always reads latest data from a Device/PLC, regardless of cache status.

Direct Read APIs are identified with a capital "D" or "DM" at the end of each API name.

Direct Write

This API writes values. Direct Write APIs are identified with a capital "D" or "DM" at the end of each API name.

Write with Cache Refresh

When caching data from a device, 'Pro-Server EX' rereads the relevant device data after writing values, to refresh

the cache data.

The processing speed of this API is lower than that of Direct Write APIs. When 'Pro-Server EX' has cache-read

device data, use Write with Cache Refresh.

Application A

Pro-Server EX

Application B

Using API Functions

Pro-Server EX Reference Manual 27-6

27.1.3 Cache Buffer Control APIs

Cache Buffer Control APIs allow you to know whether cache data for a target device has been updated or not.

Cache Buffer
When caching device data, 'Pro-Server EX' manages multiple devices as a whole. The unit of the management is

called "cache buffer".

(1) One cache buffer is comprised of multiple records.

(2) One record can be specified by direct specification of addresses of consecutive multiple devices, by symbol

specification, or by group symbol specification.

(3) You can assign a unique name to each cache buffer.

Cache buffer updating procedure
To update a cache buffer, "Polling" and "Constant monitoring" methods are available.

The principle of polling method

According to a list of target devices in the cache buffer, 'Pro-Server EX' reads device data to update the cache

buffer when the cycle specified in cache buffer registration is reached.

• Cache Buffer Control APIs are not intended to rewrite a network project file, but used to add data
to or change data in the internal memory of 'Pro-Server EX'.

• For cache buffer registration, the following two methods are available:
(1) Registration using 'Pro-Studio EX' (Create a cache buffer in "Device Cache" on the feature
screen, and register it in a network project file.)
(2) Registration using API

PC Polling Cycle

Pro-Server EX

GP

Device/PLC

Cache Data

List of

Target Cache Read device

Cache Data Source Node

Using API Functions

Pro-Server EX Reference Manual 27-7

The principle of constant monitoring method

At the start of cache buffer updating, 'Pro-Server EX' sends a list of target devices to a data source node.

According to the list, the data source node constantly reads device data (as fast as possible), and sends only

changed data to 'Pro-Server EX'.

'Pro-Server EX' receives the data, and handles it as cache data.

Selecting constant monitoring method or polling method
If a large volume of device data are monitored with the constant monitoring method, then 'Pro-Server EX' is

engaged in monitoring, resulting in deterioration of the whole system performance.

To prevent this, it is recommended to select the constant monitoring method only for highly-urgent items, and to

use the polling method for other items.

With the polling method, the cache buffer may not be updated according to the update cycle, depending on your

PC or network conditions, types of Device/PLCs, and performance of your system. In this case, use Direct Read

APIs.

As standard data volume acceptable with each method, the constant monitoring method can handle up to tens of

bytes to hundreds of bytes, and the polling method can handle up to several kilobytes. For a larger data volume,

use Direct Read APIs.

Note that the allowable number of bytes varies depending on performance of your system.

• When the cache data source node is in the GP Series, the constant monitoring method cannot be
used.

PC
Pro-Server EX

Display Unit
 Device/PLCSend a list of target cache

Send only varied data

Always read device

Cache Data

List of
Target Cache

Cache Data

Using API Functions

Pro-Server EX Reference Manual 27-8

Starting and Stopping Caching
'Pro-Server EX' caching start/stop timing is described below.

(1) Caching starts or stops by cache buffer.

(2) To register a cache buffer in a network project file with 'Pro-Studio EX', the following three types of

registration methods can be selected for each cache buffer. The caching start timing for each method is as follows.

1) At start of 'Pro-Server EX'

After 'Pro-Server EX' starts and a network project is loaded, 'Pro-Server EX' starts caching.

When a network project is reloaded, 'Pro-Server EX' also starts caching.

2) Starting caching automatically when a pre-registered device is read

When a Device Read API is issued for a cache device registered in the cache buffer, 'Pro-Server EX' starts

caching.

Even if reading is executed for some of the devices registered in the cache buffer, 'Pro-Server EX' starts

caching for all registered devices.

Caching can be started by all the reading methods as well as Device Read APIs. (For example, when a device

is specified as a data source for a data transfer function, or when a device is subjected to start condition check,

caching starts.)

However, only when caching is started with the method 2), 'Pro-Server EX' stops caching if there is no access

to the target device in the cache buffer for a specified period.

3) Starting caching with a program using Cache Buffer Start API (PS_StartCache)

(3) In the following conditions, 'Pro-Server EX' stops caching.

1) When 'Pro-Server EX' is closed, the cache buffer stops, and discards cache data.

2) Immediately before a network project is reloaded, the cache buffer stops, and discards cache data.

3) When the function of "Automatically start when a registered device is read" is enabled, and the cache

buffer is not accessed within a specified stop time after start of caching, the cache buffer stops. (Cache data

will not be discarded.)

4) When the cache buffer is stopped with a program by using the Cache Stop API (PS_StopCache).

Using API Functions

Pro-Server EX Reference Manual 27-9

27.1.4 Group Access

Some APIs use a group symbol to specify a device address.

With a group symbol, 'Pro-Server EX' can efficiently access multiple devices with a single call of an API.

When calling API individually for each device:

Every time the API is called, 'Pro-Server EX' communicates with the device.

• When 'Pro-Server EX' accesses devices by using a group symbol comprised of multiple devices,
each access speed becomes high, and 'Pro-Server EX' and display unit internally optimize the
processing. Therefore, you cannot specify the device access order. (The registration order of
symbols in group symbol registration does not mean the access order.)
If an access error occurs with any one of the multiple devices, the processing will stop. 'Pro-Server
EX' recognizes it as the whole group access error, and will not execute access to the remaining
devices.

• The maximum group symbol data size available with a single call of an API is 1 Mbyte.

Display Unit
Device/PLCPC

Application

Access to A100
(API call)

Access to B200
(API call)

Access to C300
(API call)

Network

Pro-Server EX

A100

B200

C300

Using API Functions

Pro-Server EX Reference Manual 27-10

When accessing group symbols

Operation differs depending on the type of node.

• For GP4000/LT4000 Series node, GP3000 Series node, WinGP node or LT3000 node

'Pro-Server EX' sends a request for each node only once. The node internally divides the request to access

each device separately. Thus, 'Pro-Server EX' can efficiently communicate with the devices on the network.

Application

Access with a group
symbol (API call)

Pro-Server EX
GP4000
GP3000
WinGP
LT3000

O
ptim

ization Processing

Network

Device/PLCPC

A100

B200

C300

O
ptim

ization Processing

Using API Functions

Pro-Server EX Reference Manual 27-11

• For GP Series node

The API is called only once, and 'Pro-Server EX' internally divides the request to access each GP Series node

separately. However, if the group has several consecutive symbols, 'Pro-Server EX' accesses these symbols at

once.

Display Unit
Device/PLCPC

Application

Access with a group
symbol (API call)

Network

O
ptim

ization P
rocessing

Pro-Server EX

A100

B200

C300

Using API Functions

Pro-Server EX Reference Manual 27-12

Data structure for group symbol access
When 'Pro-Server EX' accesses devices via a group symbol, the data buffer structure varies depending on the

symbol type or size of the group. The data buffer structure by group symbol type is as follows:

Examples of the data buffer structures are shown below.

Group symbol data type Secured data size

Bit Data

• For bit symbol
Data buffer is secured in multiples of 16 bits.
• For bit offset symbol
No data buffer is secured.

8-bit (Signed) Data

Data buffer of 1 byte/device is secured. Binary value is used. 8-bit (Unsigned) Data

8-bit (HEX) Data

8-bit (BCD) Data Data buffer of 1 byte/device is secured. During access to a device, 'Pro-Server
EX' executes BCD-Binary conversion.

16-bit (Signed) Data

Data buffer of 2 bytes/device is secured. Binary value is used. 16-bit (Unsigned) Data

16-bit (HEX) Data

16-bit (BCD) Data Data buffer of 2 bytes/device is secured. During access to a device, 'Pro-Server
EX' executes BCD-Binary conversion.

32-bit(Signed)Data

Data buffer of 4 bytes/device is secured. Binary value is used.32-bit(Unsigned)Data

32-bit(HEX)Data

32-bit(BCD)Data Data buffer of 4 bytes/device is secured. During access to a device, 'Pro-Server
EX' executes BCD-Binary conversion.

Single-precision floating
point

Data buffer of 4 bytes/device is secured. The value is handled as a single-
precision floating point value.

Double-precision floating
point

Data buffer of 8 bytes/device is secured. The value is handled as a single-
precision floating point value.

Character string data Data buffer of 1 byte/character is secured. The data is handled as a NULL-
terminated character string.

TIME Data
Data buffer of 1 device/4 bytes is secured. When accessing actual device, binary
value with internal format is converted to value with external device format.TIME_OF_DAY Data

DATE Data

DATE_AND_TIME Data Data buffer of 1 device/8 bytes is secured. When accessing actual device, binary
value with internal format is converted to value with external device format.

Using API Functions

Pro-Server EX Reference Manual 27-13

Sym1

Sym2

 Value unstable

Sym3

Group1.Sym4

Group2.Sym5

Group2.Sym6

Group3.Sym7

Group3.Sym8

LS0100
LS0101

LS0600

LS0102

LS0400

LS0404

LS0500

LS0504

LS0505,LS0506

LS02005

LS0300A

LS301A

LS03019

LS0301D

LS06005

Group1

Group2

Group3

Simple word symbol

Data is simply aligned.

(1 box equivalent to 2 bytes)

Bit symbol

Bit data is aligned to

the right in 16-bit

20 bits requires the work

for 4 bytes.

Group including 2 members

Simple group including

1 member

Group including word symbol

and bit offset symbol

Note: Bit offset symbol (Sym8) does not have the work for group access.

However, it accepts unit access. The work at that time is same as that

for bit symbol.

Using API Functions

Pro-Server EX Reference Manual 27-14

Group4[0].Sym9

Group4[0].Sym12

Group4[1].Sym9

Group4[1].Sym12

Group4[2].Sym9

Group4[2].Sym12

Group4[0].Sym10

Group4[0].Sym11

Device addresses for Group4[1].Sym10 and Group4[1].Sym11 are LS07090 and LS07091 respectively.

Device addresses for Group4[2].Sym10 and Group4[2].Sym11 are LS0718 and LS07181 respectively.

Group6[0].Group5[0].Sym13

Group6[0].Group5[1].Sym13

Group6[0].Group5[2].Sym13

Group6[0].Sym15

Group6[1].Group5[0].Sym13

Group6[1].Group5[1].Sym13

Group6[1].Group5[2].Sym13

Group6[1].Sym15

Group6[2].Group5[0].Sym13

Group6[2].Group5[1].Sym13

Group6[2].Group5[2].Sym13

Group6[2].Sym15

LS0910
LS0911

LS0702,LS0703

LS0700,LS0701

LS0908
LS0909

LS0708

LS0704

LS0906,LS0907

LS0902
LS0903

LS0717

LS0718,LS0719

LS0720,LS0721

LS0722

LS0709,LS0710

LS0711,LS0712

LS0713

LS0916

LS0726

LS0900
LS0901

LS0904
LS0905

LS0921

LS0922,LS0923

LS0917
LS0918
LS0919
LS0920

LS0912
LS0913

LS0914,LS0915

LS07000

LS07001

Group4[0]

Group4[1]

Group4[2]

Group4

Group6[0].Group5[0]

Group6[0].Group5[1]

Group6[0].Group5[2]

Group6[0]

Group6[1].Group5[0]

Group6[1].Group5[1]

Group6[1].Group5[2]

Group6[1]

Group6[2].Group5[0]

Group6[2].Group5[1]

Group6[2].Group5[2]

Group6[2]

Group6

One-dimensional
arrangement group

Two-dimensional group
(nest of groups)

Note: Bit offset symbols (Sym10, Sym11) do not have the work for

group access. However, they accept unit access. The works

at that time are same as that for bit symbol.

Using API Functions

Pro-Server EX Reference Manual 27-15

27.1.5 Queuing Access

'Pro-Server EX' stores a device access request every time an API is called, and then optimizes the stored requests

to access individual devices at once.

The principle of queuing access

Simple API access

'Pro-Server EX' executes sequential processing.

PC

Pro-Server EX
Application

Sum up as much as possible
Divide if necessary

Optimization
Processing

Network Display Unit Device/PLC

Pro-Server EX

Application

(1)

(2)

(3)

Target node
Device/PLC

Network

Target node Device/PLC

Target node
Device/PLC

PC

Using API Functions

Pro-Server EX Reference Manual 27-16

Queuing access

'Pro-Server EX' executes parallel processing for individual nodes.

Procedures for use

(1) Declare start of queuing access. (Call BeginQueuingRead() or BeginQueungWrite().)

(2) Call a Device Read or Device Write API.

(For example, call ReadDevice16() or WriteDevice16().)

If the argument is normal, the API is returned soon, and 'Pro-Server EX' stores the device access request only.

This step is called "Access request registration".

(3) To execute the stored device access request actually, call ExecuteQueuingAccess(). In this step, 'Pro-Server

EX' optimizes the device access request, and tries to communicate with the devices efficiently.

If 'Pro-Server EX' successfully accesses all specified devices, ExecuteQueuingAccess() returns a success code. If

'Pro-Server EX' fails to access any device, on the other hand, ExecuteQueuingAccess() returns an access error

code.

If you wish to know whether each device access request has been successfully executed or not, call

IsQueuingAcceessSucceeded() to check the result.

PC

Pro-Server EX

Application

Target node
Device/PLC

Network

Target node

Target node
Device/PLC

Device/PLC

Using API Functions

Pro-Server EX Reference Manual 27-17

• During "Access request registration", 'Pro-Server EX' stores the access data buffer
address (address only, excluding data).
Therefore, when running "Access request registration", the data buffer address passed to
each API must continue to exist until ExecuteQueuingAccess() returns a value after it is
called.
Otherwise, 'Pro-Server EX' will access an invalid address and forcibly exit.
Also, when queuing qccess is used again, the data buffer must remain in the address
specified in "access request registration".

• When registering access requests, 'Pro-Server EX' remembers the data buffer's address that was
used for access. (Remembers the address only, not the data.)
As a result,

• When using queuing access, you cannot register read access and write access simultaneously. For
example, after declaration of start of queuing access for read access, write access cannot be
registered. Also, after declaration of start of queuing access for write access, read access cannot be
registered.
However, since queuing access is registered for each Pro-Server handle, you can register write
access and read access separately for different Pro-Server handles.

• Once an access request is registered, you need not re-register it when you try to access the same
device with the same method.
Since 'Pro-Server EX' stores an access request per Pro-Server handle, it will be executed repeatedly
based on the stored data, every time ExecuteQueuingAccess() is called.
Access request registration memory will be cleared in the following cases:
(1) When a stored Pro-Server handle is discarded.
(2) When new queuing access registration is started.
(3) When existing queuing access registration is cancelled (CancelQueuingAccess() is called). If a
function other than Converting error code into character string(EasyLoadErrorMessage etc.) is
executed after execution of ExecuteQueuingAccess(), 'Pro-Server EX' cancels existing queuing
data, and starts new queuing access registration.

Using API Functions

Pro-Server EX Reference Manual 27-18

27.1.6 Bit Data Access

To access bit devices, 'Pro-Server EX' provides the following three types of bit data handling methods:

(1) Handling bit data in multiples of 16 bits: Bit devices are handled as bit strings in multiples of 16 bits.

A specified quantity of bit data are stored and used from bit D0 (right end).

Even if only one device is specified, a 16-bit data buffer is required. Data buffers are required in multiples of 16

bits, depending on the specified number of devices.

(Example) Data buffer storing order for 20 bit devices

< Applicable API >
When data type "1" (EASY_AppKind_Bit) is specified for ReadDeviceBit/WriteDeviceBit(), ReadDevice/

WriteDevice() or ReadDeviceVariant/WriteDeviceVariant();

When a bit symbol, or a group including a bit symbol is specified for ReadSymbol/WriteSymbol()

(2) Handling bit data as Variant BOOL data: One bit is handled as Variant BOOL data.

The data buffer handles one piece of Variant BOOL data for one bit. BOOL data alignments as many as the

specified number of devices are provided.

< Applicable API >
When data type "0x201" (EASY_AppKind_BOOL) is specified for ReadDeviceVariant/WriteDeviceVariant();

When a bit symbol, or a group including a bit symbol is specified for ReadSymbolVariant/WriteSymbolVariant()

(3) Handling bit offset symbol for group symbol access

If you access a device by directly specifying a bit offset symbol, the data buffer handles "Strings in multiples of 16

bits", or "Variant BOOL data", as described in the above section.

However, when you access a device by using a group symbol that includes a bit offset symbol, a data area for the

bit offset symbol is not secured in the data buffer.

A bit offset symbol cannot exist by itself without a word symbol, or a parent symbol. The data area is secured for

this parent symbol, and you can use a part of that area for the bit offset symbol.

Refer to "27.1.4 Group Access" for more details.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

16 15 14 13 12 10 11 10 9 8 7 6 5 3 2 1

* * * * * * * * * * * * 20 19 18 17

Using API Functions

Pro-Server EX Reference Manual 27-19

27.1.7 System APIs

System APIs are intended for system control, such as starting or closing 'Pro-Server EX', loading network project

files and so on.

The system APIs are classified into the following categories:

Single-Handle APIs

You can use the 'Pro-Server EX' features without specifying a Pro-Server handle.

With this method, multiple APIs cannot be simultaneously used. (If you try to use multiple APIs simultaneously,

the double-call error occurs.)

Multi-Handle APIs

You can use the 'Pro-Server EX' features by specifying a Pro-Server handle.

You can use multiple APIs simultaneously by specifying different Pro-Server handles.

27.1.8 SRAM Data Access APIs

The SRAM incorporated in the display unit Series stores various data depending on the display unit setup and

operating conditions.

The following APIs are intended to access data stored in the SRAM.

All SRAM Data Access APIs support both Single-Handle and Multi-Handle functions.

This section describes Single-Handle APIs. Multi-Handle APIs are identified with "M" at the end of each API

name, and a Pro-Server handle is added to the first argument.

27.1.9 CF Card and SD Card APIs

API for accessing data on CF and SD cards.

Like SRAM, stores various data depending on the display unit setup and operating conditions.

Device Access APIs

Pro-Server EX Reference Manual 27-20

27.2 Device Access APIs

Single-Handle Cache Read APIs

Function Bit data

INT WINAPI ReadDeviceBit(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 8-bit data

INT WINAPI ReadDevice8(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* obData,WORD wCount);

Function 16-bit data

INT WINAPI ReadDevice16(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 32-bit data

INT WINAPI ReadDevice32(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* odwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI ReadDeviceBCD8(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* obData,WORD wCount);

Function 16-bit BCD data

INT WINAPI ReadDeviceBCD16(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 32-bit BCD data

INT WINAPI ReadDeviceBCD32(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* odwData,WORD
wCount);

Function Single-precision floating point data

INT WINAPI ReadDeviceFloat(LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT* oflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI ReadDeviceDouble(LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE* odbData,WORD
wCount);

Function Character string data

INT WINAPI ReadDeviceStr(LPCSTR sNodeName,LPCSTR sDeviceName,LPSTR psData,WORD wCount);

Function General-use data

INT WINAPI ReadDevice(LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID pData,WORD wCount,WORD
wAppKind);

Function General-use data (Variant-type)

INT WINAPI ReadDeviceVariant(LPCSTR sNodeName,LPCSTR sDeviceName,LPVARIANT pData,WORD
wCount,WORD wAppKind);

Function Group symbol

INT WINAPI ReadSymbol(LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID oReadBufferData);

Function Group symbol (Variant-type)

INT WINAPI ReadSymbolVariant(LPCSTR sNodeName,LPCSTR sSymbolName,LPVARIANT pData);

Function TIME data

INT WINAPI ReadDeviceTIME(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData, WORD
wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-21

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values read from TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data to text format.

For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function DATE data

INT WINAPI ReadDeviceDATE(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData, WORD
wCount);

Function TIME_OF_DAY data

INT WINAPI ReadDeviceTIME_OF_DAY(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData,
WORD wCount);

Function DATE_AND_TIME data

INT WINAPI ReadDeviceDATE_AND_TIME(LPCSTR sNodeName, LPCSTR sDeviceName, QWORD* oqwData,
WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-22

Single-Handle Direct Read APIs

Function Bit data

INT WINAPI ReadDeviceBitD(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 8-bit data

INT WINAPI ReadDevice8D(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* obData,WORD wCount);

Function 16-bit data

INT WINAPI ReadDevice16D(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 32-bit data

INT WINAPI ReadDevice32D(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* odwData,WORD wCount);

Function 8-bit BCD data

IINT WINAPI ReadDeviceBCD8D(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* obData,WORD wCount);

Function 16-bit BCD data

INT WINAPI ReadDeviceBCD16D(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* owData,WORD wCount);

Function 32-bit BCD data

INT WINAPI ReadDeviceBCD32D(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* odwData,WORD
wCount);

Function Single-precision floating point data

INT WINAPI ReadDeviceFloatD(LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT* oflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI ReadDeviceDoubleD(LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE* odbData,WORD
wCount);

Function Character string data

INT WINAPI ReadDeviceStrD(LPCSTR sNodeName,LPCSTR sDeviceName,LPSTR psData,WORD wCount);

Function General-use data

INT WINAPI ReadDeviceD(LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID pData,WORD wCount,WORD
wAppKind);

Function General-use data (Variant-type)

INT WINAPI ReadDeviceVariantD(LPCSTR sNodeName,LPCSTR sDeviceName,LPVARIANT pData,WORD
wCount,WORD wAppKind);

Function Group symbol

INT WINAPI ReadSymbolD(LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID oReadBufferData);

Function Group symbol (Variant-type)

INT WINAPI ReadSymbolVariantD(LPCSTR sNodeName,LPCSTR sSymbolName,LPVARIANT pData);

Function TIME data

INT WINAPI ReadDeviceTIMED(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData, WORD
wCount);

Function DATE data

INT WINAPI ReadDeviceDATED(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData, WORD
wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-23

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values read from TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data to text format.

For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME_OF_DAY data

INT WINAPI ReadDeviceTIME_OF_DAYD(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* odwData,
WORD wCount);

Function DATE_AND_TIME data

INT WINAPI ReadDeviceDATE_AND_TIMED(LPCSTR sNodeName, LPCSTR sDeviceName, QWORD* oqwData,
WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-24

Single-Handle Direct Write APIs

Function Bit data

INT WINAPI WriteDeviceBitD(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD wCount);

Function 8-bit data

INT WINAPI WriteDevice8D(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* pbData,WORD wCount);

Function 16-bit data

INT WINAPI WriteDevice16D(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD wCount);

Function 32-bit data

INT WINAPI WriteDevice32D(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* pdwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI WriteDeviceBCD8D(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* pbData,WORD wCount);

Function 16-bit BCD data

INT WINAPI WriteDeviceBCD16D(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD
wCount);

Function 32-bit BCD data

INT WINAPI WriteDeviceBCD32D(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* pdwData,WORD
wCount);

Function Single-precision floating point data

INT WINAPI WriteDeviceFloatD(LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT* pflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI WriteDeviceDoubleD(LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE* pdbData,WORD
wCount);

Function Character string data

INT WINAPI WriteDeviceStrD(LPCSTR sNodeName,LPCSTR sDeviceName,LPCSTR psData,WORD wCount);

Function General-use data

INT WINAPI WriteDeviceD(LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID pData,WORD wCount,WORD
wAppKind);

Function General-use data (Variant-type)

INT WINAPI WriteDeviceVariantD(LPCSTR sNodeName,LPCSTR sDeviceName,LPVARIANT pData,WORD
wCount,WORD wAppKind);

Function Group symbol

INT WINAPI WriteSymbolD(LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID pWriteBufferData);

Function Group symbol (Variant-type)

INT WINAPI WriteSymbolVariantD(LPCSTR sNodeName,LPCSTR sSymbolName,LPVARIANT pData);

Function TIME data

INT WINAPI WriteDeviceTIMED(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData, WORD
wCount);

Function DATE data

INT WINAPI WriteDeviceDATED(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData, WORD
wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-25

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values written to TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data from text

format. For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME_OF_DAY data

INT WINAPI WriteDeviceTIME_OF_DAYD(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData,
WORD wCount);

Function DATE_AND_TIME data

INT WINAPI WriteDeviceDATE_AND_TIMED(LPCSTR sNodeName, LPCSTR sDeviceName, QWORD* pqwData,
WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-26

Single-Handle Write APIs with Cache Refresh after Writing

Function Bit data

INT WINAPI WriteDeviceBit(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD wCount);

Function 8-bit data

INT WINAPI WriteDevice8(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* pbData,WORD wCount);

Function 16-bit data

INT WINAPI WriteDevice16(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD wCount);

Function 32-bit data

INT WINAPI WriteDevice32(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* pdwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI WriteDeviceBCD8(LPCSTR sNodeName,LPCSTR sDeviceName,BYTE* pbData,WORD wCount);

Function 16-bit BCD data

INT WINAPI WriteDeviceBCD16(LPCSTR sNodeName,LPCSTR sDeviceName,WORD* pwData,WORD wCount);

Function 32-bit BCD data

INT WINAPI WriteDeviceBCD32(LPCSTR sNodeName,LPCSTR sDeviceName,DWORD* pdwData,WORD
wCount);

Function Single-precision floating point data

INT WINAPI WriteDeviceFloat(LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT* pflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI WriteDeviceDouble(LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE* pdbData,WORD
wCount);

Function Character string data

INT WINAPI WriteDeviceStr(LPCSTR sNodeName,LPCSTR sDeviceName,LPCSTR psData,WORD wCount);

Function General-use data

INT WINAPI WriteDevice(LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID pData,WORD wCount,WORD
wAppKind);

Function General-use data (Variant-type)

INT WINAPI WriteDeviceVariant(LPCSTR sNodeName,LPCSTR sDeviceName,LPVARIANT pData,WORD
wCount,WORD wAppKind);

Function Group symbol

INT WINAPI WriteSymbol(LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID pWriteBufferData);

Function Group symbol (Variant-type)

INT WINAPI WriteSymbolVariant(LPCSTR sNodeName,LPCSTR sSymbolName,LPVARIANT pData);

Function TIME data

INT WINAPI WriteDeviceTIME(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData, WORD
wCount);

Function DATE data

INT WINAPI WriteDeviceDATE(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData, WORD
wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-27

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values written to TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data from text

format. For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME_OF_DAY data

INT WINAPI WriteDeviceTIME_OF_DAY(LPCSTR sNodeName, LPCSTR sDeviceName, DWORD* pdwData,
WORD wCount);

Function DATE_AND_TIME data

INT WINAPI WriteDeviceDATE_AND_TIME(LPCSTR sNodeName, LPCSTR sDeviceName, QWORD* pqwData,
WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-28

Multi-Handle Cache Read APIs

Function Bit data

INT WINAPI ReadDeviceBitM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 8-bit data

INT WINAPI ReadDevice8M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
obData,WORD wCount);

Function 16-bit data

INT WINAPI ReadDevice16M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 32-bit data

INT WINAPI ReadDevice32M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
odwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI ReadDeviceBCD8M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
obData,WORD wCount);

Function 16-bit BCD data

INT WINAPI ReadDeviceBCD16M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 32-bit BCD data

INT WINAPI ReadDeviceBCD32M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
odwData,WORD wCount);

Function Single-precision floating point data

INT WINAPI ReadDeviceFloatM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT*
oflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI ReadDeviceDoubleM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE*
odbData,WORD wCount);

Function Character string data

INT WINAPI ReadDeviceStrM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPSTR
psData,WORD wCount);

Function General-use data

INT WINAPI ReadDeviceM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID
pData,WORD wCount,WORD wAppKind);

Function General-use data (Variant-type)

INT WINAPI ReadDeviceVariantM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,LPVARIANT pData,WORD wCount,WORD wAppKind);

Function Group symbol

INT WINAPI ReadSymbolM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID
oReadBufferData);

Device Access APIs

Pro-Server EX Reference Manual 27-29

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values read from TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data to text format.

For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function Group symbol (Variant-type)

INT WINAPI ReadSymbolVariantM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sSymbolName,LPVARIANT pData);

Function TIME data

INT WINAPI ReadDeviceTIMEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName, DWORD*
odwData, WORD wCount);

Function DATE data

INT WINAPI ReadDeviceDATEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName, DWORD*
odwData, WORD wCount);

Function TIME_OF_DAY data

INT WINAPI ReadDeviceTIME_OF_DAYM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* odwData, WORD wCount);

Function DATE_AND_TIME data

INT WINAPI ReadDeviceDATE_AND_TIMEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR
sDeviceName, QWORD* oqwData, WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-30

Multi-Handle Direct Read APIs
Function Bit data

INT WINAPI ReadDeviceBitDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 8-bit data

INT WINAPI ReadDevice8DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
obData,WORD wCount);

Function 16-bit data

INT WINAPI ReadDevice16DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 32-bit data

INT WINAPI ReadDevice32DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
odwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI ReadDeviceBCD8DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
obData,WORD wCount);

Function 16-bit BCD data

INT WINAPI ReadDeviceBCD16DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
owData,WORD wCount);

Function 32-bit BCD data

INT WINAPI ReadDeviceBCD32DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
odwData,WORD wCount);

Function Single-precision floating point data

INT WINAPI ReadDeviceFloatDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT*
oflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI ReadDeviceDoubleDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,DOUBLE* odbData,WORD wCount);

Function Character string data

INT WINAPI ReadDeviceStrDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPSTR
psData,WORD wCount);

Function General-use data

INT WINAPI ReadDeviceDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID
pData,WORD wCount,WORD wAppKind);

Function General-use data (Variant-type)

INT WINAPI ReadDeviceVariantDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,LPVARIANT pData,WORD wCount,WORD wAppKind);

Function Group symbol

INT WINAPI ReadSymbolDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID
oReadBufferData);

Function Group symbol (Variant-type)

INT WINAPI ReadSymbolVariantDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sSymbolName,LPVARIANT pData);

Device Access APIs

Pro-Server EX Reference Manual 27-31

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values read from TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data to text format.

For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME data

INT WINAPI ReadDeviceTIMEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* odwData, WORD wCount);

Function DATE data

INT WINAPI ReadDeviceDATEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* odwData, WORD wCount);

Function TIME_OF_DAY

INT WINAPI ReadDeviceTIME_OF_DAYDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* odwData, WORD wCount);

Function DATE_AND_TIME data

INT WINAPI ReadDeviceDATE_AND_TIMEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR
sDeviceName, QWORD* oqwData, WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-32

Multi-Handle Direct Write APIs
Function Bit data

INT WINAPI WriteDeviceBitDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 8-bit data

INT WINAPI WriteDevice8DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
pbData,WORD wCount);

Function 16-bit data

INT WINAPI WriteDevice16DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 32-bit data

INT WINAPI WriteDevice32DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
pdwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI WriteDeviceBCD8DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
pbData,WORD wCount);

Function 16-bit BCD data

INT WINAPI WriteDeviceBCD16DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 32-bit BCD data

INT WINAPI WriteDeviceBCD32DM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,DWORD* pdwData,WORD wCount);

Function Single-precision floating point data

INT WINAPI WriteDeviceFloatDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT*
pflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI WriteDeviceDoubleDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,DOUBLE* pdbData,WORD wCount);

Function Character string data

INT WINAPI WriteDeviceStrDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPCSTR
psData,WORD wCount);

Function General-use data

INT WINAPI WriteDeviceDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID
pData,WORD wCount,WORD wAppKind);

Function General-use data (Variant-type)

INT WINAPI WriteDeviceVariantDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,LPVARIANT pData,WORD wCount,WORD wAppKind);

Function Group symbol

INT WINAPI WriteSymbolDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID
pWriteBufferData);

Function Group symbol (Variant-type)

INT WINAPI WriteSymbolVariantDM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sSymbolName,LPVARIANT pData);

Device Access APIs

Pro-Server EX Reference Manual 27-33

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values written to TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data from text

format. For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME data

INT WINAPI WriteDeviceTIMEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* pdwData, WORD wCount);

Function DATE data

INT WINAPI WriteDeviceDATEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* pdwData, WORD wCount);

Function TIME_OF_DAY data

INT WINAPI WriteDeviceTIME_OF_DAYDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR
sDeviceName, DWORD* pdwData, WORD wCount);

Function DATE_AND_TIME data

INT WINAPI WriteDeviceDATE_AND_TIMEDM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR
sDeviceName, QWORD* pqwData, WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-34

Multi-Handle Write APIs with Cache Refresh after Writing
Function Bit data

INT WINAPI WriteDeviceBitM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 8-bit data

INT WINAPI WriteDevice8M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
pbData,WORD wCount);

Function 16-bit data

INT WINAPI WriteDevice16M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 32-bit data

INT WINAPI WriteDevice32M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
pdwData,WORD wCount);

Function 8-bit BCD data

INT WINAPI WriteDeviceBCD8M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,BYTE*
pbData,WORD wCount);

Function 16-bit BCD data

INT WINAPI WriteDeviceBCD16M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,WORD*
pwData,WORD wCount);

Function 32-bit BCD data

INT WINAPI WriteDeviceBCD32M(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DWORD*
pdwData,WORD wCount);

Function Single-precision floating point data

INT WINAPI WriteDeviceFloatM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,FLOAT*
pflData,WORD wCount);

Function Double-precision floating point data

INT WINAPI WriteDeviceDoubleM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,DOUBLE*
pdbData,WORD wCount);

Function Character string data

INT WINAPI WriteDeviceStrM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPCSTR
psData,WORD wCount);

Function General-use data

INT WINAPI WriteDeviceM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sDeviceName,LPVOID
pData,WORD wCount,WORD wAppKind);

Function General-use data (Variant-type)

INT WINAPI WriteDeviceVariantM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sDeviceName,LPVARIANT pData,WORD wCount,WORD wAppKind);

Function Group symbol

INT WINAPI WriteSymbolM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR sSymbolName,LPVOID
pWriteBufferData);

Function Group symbol (Variant-type)

INT WINAPI WriteSymbolVariantM(HANDLE hProServer,LPCSTR sNodeName,LPCSTR
sSymbolName,LPVARIANT pData);

Device Access APIs

Pro-Server EX Reference Manual 27-35

* For each parameter, please refer to " Parameters of read/write functions".

* You can convert binary values written to TIME, DATE, TIME_OF_DAY, and DATE_AND_TIME data from text

format. For information about text conversion, refer to "27.8 Binary Date and Time / Text Display Conversion".

Function TIME data

INT WINAPI WriteDeviceTIMEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName, DWORD*
pdwData, WORD wCount);

Function DATE data

INT WINAPI WriteDeviceDATEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName, DWORD*
pdwData, WORD wCount);

Function TIME_OF_DAY data

INT WINAPI WriteDeviceTIME_OF_DAYM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR sDeviceName,
DWORD* pdwData, WORD wCount);

Function DATE_AND_TIME data

INT WINAPI WriteDeviceDATE_AND_TIMEM(HANDLE hProServer, LPCSTR sNodeName, LPCSTR
sDeviceName, QWORD* pqwData, WORD wCount);

Device Access APIs

Pro-Server EX Reference Manual 27-36

Parameters of read/write functions

< Argument >

bsNodeName : Pointer to node name (character string)

Specify the entry node name or the IP address registered in 'Pro-Studio EX' directly.

Ex. 1) When specifying node name: "AGP"

Ex. 2) When specifying IP address directly: "192.9.201.1"

bsDeviceName : Pointer to the symbol (character string) subjected to Read/Write function

Specify the symbol name or the device address registered in 'Pro-Studio EX' directly.

Ex. 1) When specifying symbol name: "SWITCH1"

Ex. 2) When specifying device address directly: "M100"

Function

Symbol data type

Bit
8 bits 16 bits 32 bits

Float Double String TIME DATE
TIME
OF
DAY

DATE_
AND_
TIMES/U/

HEX BCD S/U/
HEX BCD S/U/

HEX BCD

XXXDeviceBit 0 - - - - - - - - - - - - -

XXXDevice8 - 0 - - - - - - - - - - - -

XXXDevice16 - - - 0 - - - - - - - - - -

XXXDevice32 - - - - - 0 - - - - - - - -

XXXDeviceBCD8 - - 0 - - - - - - - - - - -

XXXDeviceBCD16 - - - - 0 - - - - - - - - -

XXXDeviceBCD32 - - - - - - 0 - - - - - - -

XXXDeviceFloat - - - - - - - 0 - - - - - -

XXXDeviceDouble - - - - - - - - 0 - - - - -

XXXDeviceStr - - - - - - - - - 0 - - - -

XXXDevice 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XXXDeviceTIME - - - - - - - - - - 0 - - -

XXXDeviceDATE - - - - - - - - - - - 0 - -

XXXDeviceTIME_OF
_DAY - - - - - - - - - - - - 0 -

XXXDeviceDATE_A
ND_TIME - - - - - - - - - - - - - 0

Device Access APIs

Pro-Server EX Reference Manual 27-37

pxxData : Pointer to read/write target data

Accessible data types and corresponding argument types are listed below.

Accessible data type Argument type

Bit data WORD * pwData

8-bit data BYTE * pbData

16-bit data WORD * pwData

32-bit data DWORD * pdwData

8-bit BCD data BYTE * pbData

16-bit BCD data WORD * pwData

32-bit BCD data DWORD * pdwData

Single-precision floating point
data FLOAT * pflData

Double-precision floating
point data DOUBLE * pdbData

Character string data LPTSTR psData

General-use data LPVOID pData

General-use data (for VB) LPVARIANT pData

TIME data DWORD * pdwData

DATE data DWORD * pdwData

TIME_OF_DAY data DWORD * pdwData

DATE_AND_TIME data QWORD * pdwData

Device Access APIs

Pro-Server EX Reference Manual 27-38

wCount : Quantity of read/write target data

With the Read/WriteDeviceStr function, character string data is counted as the number of bytes. For a device

symbol with 16-bit width, specify multiples of two characters; for a device symbol with 32-bit width, specify

multiples of four characters.

The maximum data quantities subjected to read/write functions are as follows:

Accessible data type Read Write

Bit data 255 255

8-bit data 1020 1020

16-bit data 1020 1020

32-bit data 510 510

8-bit BCD data 1020 1020

16-bit BCD data 1020 1020

32-bit BCD data 510 510

Single-precision floating
point data 510 510

Double-precision floating
point data 255 255

Character string data 2040 characters
(single-byte)

2040 characters
(single-byte)

TIME data 510 510

DATE data 510 510

TIME_OF_DAY data 510 510

DATE_AND_TIME data 255 255

Device Access APIs

Pro-Server EX Reference Manual 27-39

wAppKind : Data type specification

* Unable to use with VB functions.

With the Read/Write Device function, the data type is specified by parameter. Therefore, the data type can be

dynamically changed.

< Return value >
Normal end: 0

Abnormal end: Error code

< Special Note >
When using the Read/WriteDeviceBit function:

pwData stores a quantity of data specified with wCount, consecutively from the D0 bit.

Example: When wCount is "20"

When reading/writing multiple consecutive bit data, it is more efficient to use Read/Write/Device 8, 16, and 32

functions than Read/WriteDeviceBit functions.

The bit indicated with "*" (asterisk) stores an undefined value. Mask these areas in your application program.

Value Data type Value Data type

1 Bit 11 Double

2 Signed 16 bits 12 String

3 Unsigned 16 bits 13 Signed 8 bit

4 HEX 16 bits 14 Unsigned 8 bit

5 BCD 16 bits 15 HEX 8 bit

6 Signed 32 bits 16 BCD 8 bit

7 Unsigned 32 bits 17 TIME

8 HEX 32 bits 18 DATE

9 BCD 32 bits 19 TIME_OF_DAY

10 Float 20 DATE_AND_TIME (*)

F E D C B A 9 8 7 6 5 4 3 2 1 0

PwData 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

PwData+1 * * * * * * * * * * * * 20 19 18 17

Device Access APIs

Pro-Server EX Reference Manual 27-40

When using Read/WriteDeviceBCD8, Read/WriteDeviceBCD16 or Read/WriteDeviceBCD32 functions:

If the target device/PLC handles BCD data, you can use these functions. However, the data passed with these

functions (contents of pxxData) are handled as binary data, not BCD data. ('Pro-Server EX' internally executes

BCD conversion.) A negative value cannot be handled.

When using the string data functions:

To receive character string data for variables, secure sufficient data storing area.

Function Decimal expression Hexadecimal expression

Read/WriteDeviceBCD8 0 to 99 00 to 63

Read/WriteDeviceBCD16 0 to 9999 0000 to 270F

Read/WriteDeviceBCD32 0 to 99999999 00000000 to 05F5E0FF

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-41

27.3 Cache Buffer Control APIs

Function Creating cache buffer

To increase the device read processing speed, 'Pro-Server EX' incorporates the device data caching function (with copy
function). This API is used to create a cache buffer.
This API only defines a cache buffer. To define which device to cache, use PS_EntryCacheRecord().

Single
INT WINAPI PS_CreateCache(LPCSTR sCacheName, DWORD dwPollingTime);
Multi
INT WINAPI PS_CreateCacheM(HANDLE hProServer, LPCSTR sCacheName, DWORD dwPollingTime);

Argument
sCacheName: (In) Cache buffer name
dwPollingTime: (In) To select the constant monitoring method, specify "0".
 The cache buffer is updated as fast as possible.
 If you specify any value other than "0", the polling method is selected.
Specify the polling cycle (cache updating cycle) by the millisecond.

Return value
Normal end: 0
Abnormal end: Error code

Special Note
• Up to 1000 cache buffers can be created for a single 'Pro-Server EX' program.
• You can directly use the cache buffer which has been registered when creating a network project file with 'Pro-Studio

EX'. It is unnecessary to re-create it with this API.

Function Registering record into cache buffer

Registers a caching device (cache source device) into the cache buffer created with PS_CreateCache().

For a GP Series node or Pro-Server EX node, 'Pro-Server EX' does not support the constant monitoring method to
update a cache buffer.
Therefore, if you specify a GP Series node or Pro-Server EX node with this API for a cache buffer subjected to the
constant monitoring method (if dwPollingTime is set to "0" when a cache buffer is created with PS_CreateCache()), an
error occurs.

Single
INT WINAPI PS_EntryCacheRecord(LPCSTR sCacheName, LPCSTR sNodeName, LPCSTR sDevice, WORD
wAppKind, WORD wCount);
Multi
INT WINAPI PS_EntryCacheRecordM(HANDLE hProServer, LPCSTR sCacheName, LPCSTR sNodeName,
LPCSTR sDevice, WORD wAppKind, WORD wCount);

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-42

Argument
sCacheName: (In) Cache buffer name

Register a cache source device into the cache buffer specified with this
name.

sNodeName: (In) Entry node name with cache source Device/PLC name
sDevice:(In) Cache source device

To specify a cache source device, you can directly specify the device address, or
specify a symbol or group registered with 'Pro-Studio EX'. If you specify a
group, multiple symbols can be registered at once.

wAppKind: (In) Source device data type
Available data types vary depending on the cache source device designation
method.
a) When device address of cache source device is directly specified:
Specify a data type (1 to 20) available with 'Pro-Server EX'. "0" cannot be
specified.

b) When symbol is specified for cache source device:
Specify a data type (0 to 20) available with 'Pro-Server EX'. If you specify "0",
the symbol type specified in symbol definition is used.
c) When group is specified for cache source device:
Fixed to "0".
The symbol type is registered for all symbols in the specified group.

wCount: (In) Device data quantity subjected to caching
Available values vary depending on the cache source device specification
method.
a) When device address of cache source device is directly specified:
Data quantity (1 to 2040) according to the device type can be used. (The
maximum value varies depending on the device type.)
b) When symbol is specified for cache source device:
If you specify "0", the quantity specified in symbol definition is used.
If you specify any value other than 0, data quantity (1 to 2040) according to the
device type can be used. (The maximum value varies depending on the device
type.)
c) When group is specified for cache source device:
Fixed to "0".
All symbols in the specified group are subjected to caching.

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Value Data type Value Data type

1 Bit 11 Double-precision floating point

2 16 bits, Signed decimal 12 Character string

3 16 bits, Unsigned decimal 13 8 bit (Signed) data

4 16 bits, Hexadecimal 14 8 bit (Unsigned) data

5 16 bits, BCD 15 8 bit (HEX) data

6 32 bits, Signed decimal 16 8 bit (BCD) data

7 32 bits, Unsigned decimal 17 TIME data

8 32 bits, Hexadecimal 18 TIME_OF_DAY data

9 32 bits, BCD 19 DATE data

10 Single-precision floating point 20 DATE_AND_TIME data

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-43

Function Starting caching

Starts caching.

Single
INT WINAPI PS_StartCache(LPCSTR sCacheName);
Multi
INT WINAPI PS_StartCacheM(HANDLE hProServer, LPCSTR sCacheName);

Argument
sCacheName: (In) Name of cache buffer to start

A cache buffer name registered with 'Pro-Studio EX' can be also specified.

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Stopping caching

Temporarily stops caching.
Caching stops, but definition of the cache buffer is retained.
To restart caching, call PS_StartCache().

Single
INT WINAPI PS_StopCache(LPCSTR sCacheName);
Multi
INT WINAPI PS_StopCacheM(HANDLE hProServer, LPCSTR sCacheName);

Argument
sCacheName: (In) Name of cache buffer to stop

A cache buffer name registered with 'Pro-Studio EX' can be also specified.

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Checking caching status

Checks caching status.

Single
INT WINAPI PS_GetCacheStatus(LPCSTR sCacheName);
Multi
INT WINAPI PS_GetCacheStatusM(HANDLE hProServer, LPCSTR sCacheName);

Argument
sCacheName: (In) Name of cache buffer to be checked

A cache buffer name registered with 'Pro-Studio EX' can be also specified.

Return value
0 : The cache buffer has
been created, but not
started yet.
1: Caching in progress
2: Caching under
suspension
XX: Error code

Special Note

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-44

Function Discarding cache buffer

Stops caching, and discards the cache buffer.

Single
INT WINAPI PS_DestroyCache(LPCSTR sCacheName);
Multi
INT WINAPI PS_DestroyCacheM(HANDLE hProServer, LPCSTR sCacheName);

Argument
sCacheName: (In) Name of cache buffer to be discarded
A cache buffer name registered with 'Pro-Studio EX' can be also specified.

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Setting cache update notification function

Sets the function to notify cache buffer update status to a specified window.

When a device is cache-read from an application, there will be no change without updating the cache data even if the
device is frequently cache-read.
'Pro-Server EX' can send a message to a specified window, when cache data is updated (when at least one target device
has a change with the constant monitoring method, or when one polling cycle is completed with the polling method).
If your system is built so as to execute cache-reading of a device after receiving this message, the system efficiency can
be improved.
This API allows you to set "Target cache buffer name", "Window to receive the message", and "Contents of the
message" in 'Pro-Server EX'.
After these settings are normally completed, the API returns the ID that identifies the currently-set notification function.

Single
INT WINAPI PS_SetNotifyFromCache(LPCSTR sCacheName, HWND hWnd, UINT message, WPARAM WParam,
LPARAM LParam, HANDLE* ohCacheNotifyID);
Multi
INT WINAPI PS_SetNotifyFromCacheM(HANDLE hProServer, LPCSTR sCacheName, HWND hWnd, UINT
message, WPARAM WParam, LPARAM LParam, HANDLE* ohCacheNotifyID);

Argument
sCacheName: (In) Cache buffer name
 A cache buffer name registered with 'Pro-Studio EX' can be also specified.

hWnd: (In) Handle for the window to receive the message
message: (In) Message ID to be sent to the window
wParam: (In) WPARAM value to be sent to the window together with message ID
LParam: (In) LPARAM value to be sent to the window together with message ID
ohCacheNotifyID: (Out) Returns the ID that identifies the currently set notification
function.

Return value
Normal end: 0
Abnormal end: Error code

Special Note
If the returned handle is not necessary, discard it with PS_KillNotifyFromCache().
After the cache buffer is updated, call PostMessage() to send the message (specified with the second argument),
wParam value (specified with the third argument), and LParam value (specified with the fourth argument) to the target
window (hWnd).
For details of PostMessage(), refer to the Windows API Manual.

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-45

Function Accepting next cache update notification

Accepts the next cache update notification.

'Pro-Server EX' provides the function to send a message to a specified window when a cache buffer is updated.
However, once this notification function is executed, 'Pro-Server EX' will not send a message until this API is called
again, even if the cache buffer is updated next. This is because in case it has taken a long time in processing with the
notification routine, a multiple-call error can occur with the relevant routine when 'Pro-Server EX' sends the next cache
update message. (If the notification routine receives the next message before completion of the processing, a multiple-
call error occurs with the routine.)
To prevent this error, this API explicitly informs 'Pro-Server EX' that it can send the next message.
By calling this API at the end of the processing of the notification routine, you can build a system that enables
continuous processing every time a cache buffer is updated.

Single
INT WINAPI PS_AcceptNextNotifyFromCache(HANDLE hCacheNotifyID);
Multi
INT WINAPI PS_AcceptNextNotifyFromCacheM(HANDLE hProServer, HANDLE hCacheNotifyID);

Argument
hCacheNotifyID: (In) ID of next message acceptance notification function
ID obtained with PS_SetNotifyFromCache()

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Canceling cache update notification

Cancels the function for sending a cache buffer update message to a specified window.

After cancellation, 'Pro-Server EX' will not send a cache buffer update message to the relevant window, even if the
cache buffer related with hCacheNotifyID is updated.

Single
INT WINAPI PS_KillNotifyFromCache(HANDLE hCacheNotifyID);
Multi
INT WINAPI PS_KillNotifyFromCacheM(HANDLE hProServer, HANDLE hCacheNotifyID);

Argument
hCacheNotifyID: (In) ID of the notification function to be canceled
ID obtained with PS_SetNotifyFromCache()

Return value
Normal end: 0
Abnormal end: Error code

Special Note
This API will not fetch and discard a message sent from 'Pro-Server EX', even if the message remains in the window.
Therefore, if 'Pro-Server EX' has sent a message to a window and the application has not fetched the message from the
window before this API is called, the application can fetch the message from the window even after this API is called.
(Depending on the timing, the notification routine may be called even after this API is called.)

Cache Buffer Control APIs

Pro-Server EX Reference Manual 27-46

Function Acquiring cache buffer update count

Returns a cache buffer update count.

By monitoring the update count on the program, you can check if a cache buffer has been updated or not.
Using this function, you can omit unnecessary calls of device cache read APIs. (Even if a device cache read API is
called for a device with no change, the value will not be changed.)

Single
INT WINAPI PS_GetUpdateCounter(LPCSTR sCacheName, DWORD* odwCount);
Multi
INT WINAPI PS_GetUpdateCounterM(HANDLE hProServer, LPCSTR sCacheName, DWORD* odwCount);

Argument
sCacheName: (In) Name of cache buffer to be monitored

A cache buffer name registered with 'Pro-Studio EX' can be also specified.
odwCount: (Out) Cache buffer update count

Counts the number of updates from 0 to 4294967295 endlessly.
(After the count reaches 4294967295, it returns to"0".)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Queuing Access Control APIs

Pro-Server EX Reference Manual 27-47

27.4 Queuing Access Control APIs

Function Starting the queuing of device read request

After this API is called, 'Pro-Server EX' queues device read requests until ExecuteQueuingAccess() is called.
Queuing is executed for each Pro-Server handle.

Single
INT WINAPI BeginQueuingRead();
Multi
INT WINAPI BeginQueuingReadM(HANDLE hProServer);

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note
• Do not call a Device Write API until you call ExecuteQueuingAccess() after BeginQueuingRead(). After

BeginQueuingRead() is called, 'Pro-Server EX' queues cache read or direct read requests. However, cache read and
direct read requests cannot be queued together.

• To discard a request in queue, call CancelQueuingAccess().
• Queuing is available up to 1500 requests and a data size of 1 Mbyte.

Function Starting the queuing of device write request

After this API is called, 'Pro-Server EX' queues device write requests until ExecuteQueuingAccess() is called.
Queuing is executed for each Pro-Server handle.

Single
INT WINAPI BeginQueuingWrite();
Multi
INT WINAPI BeginQueuingWriteM(HANDLE hProServer);

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note
• Do not call a Device Read API until you call ExecuteQueuingAccess() after BeginQueuingWrite(). After

BeginQueuingWrite() is called, 'Pro-Server EX' queues cache write or direct write requests. However, cache write
and direct write requests cannot be queued together.

• To discard a request in queue, call CancelQueuingAccess().
• Queuing is available up to 1500 requests and a data size of 1 Mbyte.

Special Note

Queuing Access Control APIs

Pro-Server EX Reference Manual 27-48

Function Executing device read/write request in queue

Accesses device data according to the device read/write request in queue.

Single
INT WINAPI ExecuteQueuingAccess();
Multi
INT WINAPI ExecuteQueuingAccessM(HANDLE hProServer);

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note
• If 'Pro-Server EX' successfully accesses all specified devices, ExecuteQueuingAccess() returns a success code. If

'Pro-Server EX' fails to access any device, on the other hand, ExecuteQueuingAccess() returns an access error code.
If you wish to know whether each device access request has been successfully executed or not, call
IsQueuingAcceessSucceeded() to check the result.

• You cannot register ACTIONs in queuing access.

Function Discarding device read/write request in queue

Discards the device read/write request in queue.

Single
INT WINAPI CancelQueuingAccess();
Multi
INT WINAPI CancelQueuingAccessM(HANDLE hProServer);

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note
After BeginQueuingWrite() or BeginQueuingRead()is called, 'Pro-Server EX' queues device access requests until
ExecuteQueuingAccess() is called.
If a request in queue becomes unnecessary for any reason, call this API. 'Pro-Server EX' discards the request in queue,
and quits queuing.

Queuing Access Control APIs

Pro-Server EX Reference Manual 27-49

Function Checking the run result of device read/write request in queue

Checks whether or not each device access request has been successfully executed, after ExecuteQueuingAccess() is
called.

Single
INT WINAPI IsQueuingAccessSucceeded(INT iIndex);
Multi
INT WINAPI IsQueuingAccessSucceededM(HANDLE hProServer,INT iIndex);

Argument
iIndex: (In) Number of request to be checked

After BeginQueuingWrite() or BeginQueuingRead() is called, Device Access APIs are
called several times to queue device access requests until ExecuteQueuingAccess() is
called. Note that you cannot know an actual device access result until execution of
ExecuteQueuingAccess().
If you wish to know a result of each device access request, execute
ExecuteQueuingAccess() first, and then specify the number (from 0) of the request for
the target device.

Return value
XX: Error code

0: Indicates that the
device access request of the
specified number has been
successfully executed.

Special Note
(Example)
BeginQueuingWrite();
 WriteDevice16("Node1","LS100",Data,10);
 WriteDevice16("Node1","LS200",Data,10);
 WriteDevice16("Node1","LS300",Data,10);
ExecuteQueuingAccess()

To check if the "Node1" access to "LS200" has been successfully executed, use IsQueuingAccessSucceeded(1).
If the return value is "0", this access has been successfully executed.

System APIs

Pro-Server EX Reference Manual 27-50

27.5 System APIs

Function Creating Pro-Server handle

Obtains a Pro-Server handle for use of a Multi-Handle function.

HANDLE WINAPI CreateProServerHandle();

Argument Return value
Normal end: Other than 0
(Handle code)
Abnormal end: 0

Special Note

Function Releasing Pro-Server handle

Releases an obtained Pro-Server handle.

INT WINAPI DeleteProServerHandle(HANDLE hProServer);

Argument
hProServer: (In) Pro-Server handle to be released

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Loading network project file

Loads the network project file specified with the argument.

Single
INT WINAPI EasyLoadNetworkProject(LPCSTR sDBName,DWORD dwSetOrAdd = TRUE);
Multi
INT WINAPI EasyLoadNetworkProjectM(HANDLE hProServer,LPCSTR sDBName,DWORD dwSetOrAdd =
TRUE);

Argument
sDBName: Specify the full path of a network project file to be loaded.
dwSetOrAdd: Reserve (Fixed to "1")
hProServer: Pro-Server handle

Return value
Normal end: 0
Abnormal end: Error code

Special Note

System APIs

Pro-Server EX Reference Manual 27-51

Function Converting error code into character string

Converts an error code returned by each API of 'Pro-Server EX' into an error message.
EasyLoadErrorMessage() returns a multibyte character string (ASCII) as a message. EasyLoadErrorMessageW()
returns a wide character string (UNICODE) as a message.

BOOL WINAPI EasyLoadErrorMessage(INT iErrorCode,LPSTR osErrorMessage);
BOOL WINAPI EasyLoadErrorMessageW(INT iErrorCode,LPWSTR owsErrorMessage);

Argument
iErrorCode: (In) Error code returned by 'Pro-Server EX' function
osErrorMessage: (Out) Pointer to the converted character string (multibyte character

string) storing area. (To call this API, secure a storing area with at least 512 bytes.)
osErrorMessage: (Out) Pointer to the converted character string (multibyte character

string) storing area. (To call this API, secure a storing area with at least 1024
bytes.)

Return value
Normal end: Other than 0
Failure in character string
conversion (ex. Undefined
code): 0

Special Note
• This API is intended to ensure compatibility with older versions of 'Pro-Server'.
• Using EasyLoadErrorMessageEx() enables conversion into a more detailed error message. We recommend you to use

EasyLoadErrorMessageEx().

Function Converting error code into character string (with status information)

Converts an error code returned by each API of 'Pro-Server EX' into an error message.
'Pro-Server EX' then returns the error message together with the error occurrence condition and other information, if
possible.
EasyLoadErrorMessage() always returns the same error message relative to a specified error code. On the other hand,
EasyLoadErrorMessageEx() returns more detailed error information including a name of communication target device,
error occurrence place and so on, depending on the error occurrence condition. Thus, EasyLoadErrorMessageEx() may
return a different error message relative to the same error code, depending on the situation.
EasyLoadErrorMessageEx() and EasyLoadErrorMessageExM() return a multibyte character string (ASCII) as a
message.
EasyLoadErrorMessageExW() and EasyLoadErrorMessageExWM() return a wide character string (UNICODE) as a
message.

Single
BOOL WINAPI EasyLoadErrorMessageEx(INT iErrorCode,LPSTR osErrorMessage);
BOOL WINAPI EasyLoadErrorMessageExW(INT iErrorCode,LPWSTR owsErrorMessage);
Multi
BOOL WINAPI EasyLoadErrorMessageExM(HANDLE hProServer,INT iErrorCode,LPSTR osErrorMessage);
BOOL WINAPI EasyLoadErrorMessageExWM(HANDLE hProServer,INT iErrorCode,LPWSTR owsErrorMessage);

Argument
iErrorCode: (In) Error code returned by 'Pro-Server EX' function
osErrorMessage: (Out) Pointer to the converted character string (multibyte character

string) storing area.(To call this API, secure a storing area with at least 1024 bytes.)
owsErrorMessage: (Out) Pointer to the converted character string (wide character string)

storing area. (To call this API, secure a storing area with at least 2048 bytes.)

Return value
Normal end: Other than 0
Failure in character string
conversion (ex. Undefined
code): 0

Special Note
• EasyLoadErrorMessage() is used to convert an error code into a message, assuming a case where an API of 'Pro-

Server EX' is called and then the API returns an error code.
• 'Pro-Server EX' can store only one piece of error status information per handle. Therefore, if you call another API

between the API that causes an error and EasyLoadErrorMessage(),EasyLoadErrorMessage() will not return error
status information because stored error status information is rewritten. For this reason, when using
EasyLoadErrorMessageM(), you must specify the same Pro-Server handle as the handle used when the relevant API
was called.

System APIs

Pro-Server EX Reference Manual 27-52

Function Initializing Pro-Server API

Initializes a Pro-Server EX API, and declares use of the API internally.
If you execute EasyInit() without starting 'Pro-Server EX', 'Pro-Server EX' will automatically start.

INT WINAPI EasyInit();

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Ending Pro-Server API

INT WINAPI EasyTerm();

Argument Return value

Special Note
This API is intended to ensure compatibility with older versions of 'Pro-Server'.
With 'Pro-Server EX', you need not call this API. (Even if you call this API, it will not be executed.)

Function Closing Pro-Server EX

Closes 'Pro-Server EX'.
After calling this API, do not call any API of 'Pro-Server EX'.
Before calling this API, be sure to discard Pro-Server handles etc.

INT WINAPI EasyTermServer();

Argument Return value
Normal end: 0
Abnormal end: Error code

Special Note

System APIs

Pro-Server EX Reference Manual 27-53

Function Pro-Server EX closing notice

This API allows you to know the 'Pro-Server EX' closing status.
When 'Pro-Server EX' starts closing processing, it sends a specified message to the window registered with this API by
using PostMessage() of Windows API.
For details of PostMessage(), refer to Windows APIs.
When the application receives the message from the window, it recognizes that 'Pro-Server EX' will be immediately
closed.

Single
INT WINAPI EasyNotifyFromServerEnd(HWND hReceivedWnd,UINT uMessage,WPARAM WParam = 0,
LPARAM LParam = 0);
Multi
INT WINAPI EasyNotifyFromServerEndM(HANDLE hProServer,HWND hReceivedWnd,UINT
uMessage,WPARAM WParam = 0, LPARAM LParam = 0);

Argument
hReceivedWnd: (In) Window that receives a closing message.
uMessage: (In) Message ID to be sent as a closing message.

This ID will be sent to the window specified with hReceivedWnd when Pro-Server
EX is being closed.

WParam: (In) WPARAM to be sent together with the message (Value of WPARAM in
PostMessage())

Lparam: (In) LPARAM to be sent together with the message (Value of LPARAM in
PostMessage())

Return value
Normal end: 0
Abnormal end: Error code

Special Note
This API is useful to build an application that closes at the same time when 'Pro-Server EX' is closed.
For example, if you specify the application main window for hReceivedWnd, and WM_QUIT for uMessage to call this
API, 'Pro-Server EX' sends WM_QUIT to the application main window when 'Pro-Server EX' is being closed.
Generally, an application uses WM_QUIT as an application closing signal. Therefore, you can build an application that
closes at the same time when 'Pro-Server EX' is closed.

Function Inhibiting message processing

Most of the Pro-Server EX APIs (functions) process Windows messages during the processing of a function if the
processing time would be long. This API can specify whether to execute or inhibit the Windows message processing.
When Windows message processing is inhibited, the relevant Windows message is stored in the message queue, and
will not be processed during execution of a function.
As a result, you will not call a function over again by clicking the icon during execution of the function.
In this case, however, the processing of all the Windows messages as well as an "icon click" message, will be inhibited,
and the processing of important messages for timer and window re-drawing is also disabled.
You can specify whether to execute or inhibit the processing of Windows messages for each Pro-Server EX handle.
With the default setting, message processing has been set to "Execute".

Single
INT EasySetWaitType(DWORD dwMode);
Multi
INT EasySetWaitTypeM(HANDLE hProServer,DWORD dwMode);

Argument
hProServerHandle: (In) Pro-Server handle subjected to processing mode change
dwMode: (In) To execute message processing, specify "1".

To inhibit message processing, specify "2".

Return value
Normal end: 0
Abnormal end: Error code

Special Note

System APIs

Pro-Server EX Reference Manual 27-54

Function Acquiring message processing mode

Acquires the current message processing mode during a call of a Pro-Server EX API.
The Multi-Handle API returns the current message processing mode for each handle.

Single
INT EasyGetWaitType();
Multi
INT EasyGetWaitTypeM(HANDLE hProServerHandle);

Argument
HANDLE hProServerHandle: (In) Handle subjected to status acquisition

Return value
1: Executes message
processing.
2: Inhibits message
processing.

Special Note

System APIs

Pro-Server EX Reference Manual 27-55

Function Adding log into log viewer

If a specific event ('Pro-Server EX' start/closing, error, etc.) occurs with internal processing, 'Pro-Server EX' can record
the event.
You can see the recorded information through the log viewer. (See "28.5 Monitoring System Event Logs")
With this API, 'Pro-Server EX' records a specific message by using this function. This API is available for application
debugging.

INT WINAPI EasyOutputLog(BYTE bLevel,LPCSTR sPrompt,LPCSTR sMessage);

Argument
bLevel: (In) Event type

Recording all messages may result in performance deterioration. To prevent this,
'Pro-Server EX' provides a filtering function for recording messages by event type.
Specify the event type that the current recording message belongs to.
The event types are listed below.

sPrompt: (In) Character string indicating event occurrence position (NULL-terminated)
sMessage: (In) Character string of the message to be recorded (NULL-terminated)

The actually recorded message is a simple combination of two character stings (sPrompt
and sMessage).

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Definition

Hexad

ecimal

value

Event type

EASY_LogLevel_SysMessage 0x01 System message

EASY_LogLevel_SysError 0x02 System error message

EASY_LogLevel_AppError 0x04 User program error message

EASY_LogLevel_AppStart 0x08 User program starting message

EASY_LogLevel_AppEnd 0x10 User program closing message

EASY_LogLevel_AppWarning 0x20 User program warning message

EASY_LogLevel_AppMessage1 0x40 User program detail message 1

EASY_LogLevel_AppMessage2 0x80 User program detail message 2

System APIs

Pro-Server EX Reference Manual 27-56

Function Clearing log from log viewer

Clears the information recorded by EasyOutputLog().
This API is available for application debugging.

INT WINAPI EasyOutputLogClear();

Argument
HANDLE hProServerHandle: (In) Handle subjected to status acquisition

Return value
Normal end: 0
Abnormal end: Error code

Special Note

SRAM Data Access APIs

Pro-Server EX Reference Manual 27-57

27.6 SRAM Data Access APIs

Function Reading SRAM backup data

Reads the following data stored in the SRAM of a GP Series node, and saves the data into a file on the PC.
Filing data are saved in binary format, and other types of data are saved in CSV format.

INT WINAPI EasyBackupDataRead(LPCSTR sSaveFileName,LPCSTR sNodeName,INT iBackupDataType,INT
iSaveMode);

Argument
sSaveFileName: (In) File path of the file to save read data. (String pointer)
sNodeName: (In) Name of read data source node (String pointer)

Pro-Server EX nodes cannot be specified.
iBackupDataType: (In) Type of data to be read

When the data source node is in the GP4000/LT4000 Series/GP3000 Series/WinGP/
LT3000 and the data type is Alarm block 1 to 8, one alarm block stores up to three types
of data (active data, history data and log data) depending on the settings of 'GP-Pro EX'.
However, this API checks if the alarm block contains valid data or not according to the
following order of precedence, and reads valid data if any.
(1) Alarm history
(2) Alarm log
(3) Alarm active
If there is no valid data, an error occurs.

iSaveMode: (In) Saving mode
0: New (If a file with the same name already exists, 'Pro-Server EX' deletes the file,
and overwrites it.)
1: Add (The read data is added to the end of an existing file. If there is no file to
save the data, 'Pro-Server EX' creates a new file.)
Others: Reserve

Return value
Normal end: 0
Abnormal end: Error code

Value
Data source node

in GP Series

Data source node

other than GP Series

0x0001 Filing data Filing data

0x0002 Logging data Sampling data of sampling group No. 1

0x0003 Line graph data Data of all sampling groups other than
sampling group No. 10x0004 Sampling data

0x0005 Alarm block 1 Alarm block 1

0x0006 Alarm history or Alarm
block 2 Alarm block 2

0x0007 Alarm log or Alarm block 3 Alarm block 3

0x0008 Alarm block 4 Alarm block 4

0x0009 Alarm block 5 Alarm block 5

0x000A Alarm block 6 Alarm block 6

0x000B Alarm block 7 Alarm block 7

0x000C Alarm block 8 Alarm block 8

Others (Reserve) (Reserve)

SRAM Data Access APIs

Pro-Server EX Reference Manual 27-58

Special Note
When reading Alarm or Sampling data, the date format is "yy/mm/dd".

Function Reading extended SRAM backup data

Reads the following data stored in the SRAM of a GP Series node, and saves the data into a file on the PC.
Filing data are saved in binary format, and other types of data are saved in CSV format.
Unlike EasyBackupDataRead(), this API enables access to extended data for the GP4000/LT4000 Series, GP3000
Series, WinGP and LT3000.

INT WINAPI EasyBackupDataReadEx(LPCSTR sSaveFileName, LPCSTR sNodeName, INT iBackupDataType, INT
iSaveMode, INT iNumber = 0 , INT iStringTable = 0x0000);

SRAM Data Access APIs

Pro-Server EX Reference Manual 27-59

Argument
sSaveFileName: (In) File path of the file to save read data. (String pointer)

sNodeName: (In) Name of read data source node (String pointer)
Pro-Server EX nodes cannot be specified.

iBackupDataType: (In) Type of data to be read

iSaveMode: (In) Saving mode
0: New (If a file with the same name already exists, 'Pro-Server EX' deletes the file,
and overwrites it.)
1: Add (The read data is added to the end of an existing file. If there is no file to save
the data, 'Pro-Server EX' creates a new file.))
Others: Reserve

Return value
Normal end: 0
Abnormal end: Error
code

Value
Data source node

in GP Series

Data source node

other than GP Series

0x0001 Filing data Filing data

0x0002 Logging data Sampling data of sampling group No. 1

0x0003 Line graph data Data of all sampling groups other than
sampling group No. 10x0004 Sampling data

0x0005 Alarm block 1
Alarm block 1

Specify iNumber for alarm type.

0x0006 Alarm history or Alarm
block 2

Alarm block 2
Specify iNumber for alarm type.

0x0007 Alarm log or Alarm block 3 Alarm block 3
Specify iNumber for alarm type.

0x0008 Alarm block 4 Alarm block 4
Specify iNumber for alarm type.

0x0009 Alarm block 5 Alarm block 5
Specify iNumber for alarm type.

0x000A Alarm block 6 Alarm block 6
Specify iNumber for alarm type.

0x000B Alarm block 7 Alarm block 7
Specify iNumber for alarm type.

0x000C Alarm block 8 Alarm block 8
Specify iNumber for alarm type.

0x8002 (Reserve) Sampling group of a specific group number
Specify iNumber for group number.

SRAM Data Access APIs

Pro-Server EX Reference Manual 27-60

iNumber: (In) This argument is ignored when sSaveFileName specifies a GP Series file.
In addition, the meaning of this argument varies depending on the value of
iBackupDataType.

iStringTable: (In) Reserve
Always specify "0".

Special Note
When reading Alarm or Sampling data, the date format is "yy/mm/dd".

Function Writing SRAM backup data

Writes specified filing data in binary format into the SRAM of a GP Series node.

INT WINAPI EasyBackupDataWrite(LPCSTR sSourceFileName,LPCSTR sNodeName,INT iBackupDataType);

Argument
sSourceFileName: (In) File path of binary-formatted filing data to be written (String

pointer)
sNodeName: (In) Name of entry node to write data (String pointer)

Pro-Server EX nodes, GP4000/LT4000 Series nodes, GP3000 Series nodes,
WinGP nodes or LT3000 nodes cannot be specified.

BackupDataType: (In) Fixed to "1". ("1" indicates filing data.)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Value of

iBackupDataType
Description

0x0005 to 0x000C

Three types of alarm data (active, history and log) are
available. Specify a target alarm type.

If the target data type does not exist in the alarm block
specified withiBackupDataType, an error occurs.

0x8002 Group number of sampling group to be read
Any value from 1 to 64

Others (Reserve)

Value of

iNumber
Description

0

'Pro-Server EX' checks if the alarm block
contains valid data or not according to
the following order of precedence, and
reads valid data if any.
(1) Alarm history
(2) Alarm log
(3) Alarm active
If there is no valid data, an error occurs.

1 Reads alarm active data.

2 Reads alarm history data.

3 Reads alarm log data.

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-61

27.7 CF Card / SD Card APIs

• API for accessing CF card and SD card data. You cannot use this with models that do not have a CF
card or SD card slot.

• When using a model with a SD card slot, please read "CF" and "CF card" as "SD" and "SD card".
• You can use the CF card API functions to read from and write to a SD card.

Similarly, you can use the SD card API functions to read from and write to a CF card.

Function Reading CF card status

Acquires connection status of the CF card in a connected the display unit.

Single
CF Card: INT WINAPI EasyIsCFCard(LPCSTR sNodeName);
SD Card: INT WINAPI EasyIsSDCard(LPCSTR sNodeName);
Multi
CF Card: INT WINAPI EasyIsCFCardM(HANDLE hProServer,LPCSTR sNodeName);
SD Card: INT WINAPI EasyIsSDCardM(HANDLE hProServer,LPCSTR sNodeName);

Argument
hProServer: Pro-Server handle
sNodeName: Name of node to read status (This

node name must be pre-registered in a
network project.)

Return value

Special Note

Function

return value

For GP Series

node

Other than GP

Series node

0x00000000 Normal Normal

0x10000001 No CF card

No CF card, or CF
card slot cover is
opened (regardless of
presence/absence of
CF card)

0x10000002
Detection of device
incompatible with
CF card driver

0x10000004 Detection of CF card
error

Detection of CF card
error

0x10000008 CF card not
initialized

Others Error without relation to CF card

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-62

Function Reading file list from CF card (Optional folder name)

Outputs a list of files from the CF card inserted in a display unit node into a file specified with the parameter. You can
specify an optional file to save the file list.

CF Card: INT WINAPI EasyGetListInCfCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount, LPCSTR
sSaveFileName);
SD Card: INT WINAPI EasyGetListInSdCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount, LPCSTR
sSaveFileName);

Argument
sNodeName: Name of node to output file list
sDirectory: Name of folder to receive file list (All capitals)
oiCount: Number of output files
sSaveFileName: Name of file to save output directory information. The specified file

stores binary data of the alignment type specified with stEasyDirInfo, in the
quantity specified with the return value of oiCount.

struct stEasyDirInfo {
BYTE bFileName[8+1];// File name (Terminated with "0")
BYTE bExt[3+1];// File extension (Terminated with "0")
BYTE bDummy[3];// Dummy
DWORD dwFileSize;// File size
BYTE bFileTimeStamp[8+1];// File timestamp (Terminated with "0")
BYTE bDummy2[3];// Dummy 2
} ;

Return value
Normal end: 0
Abnormal end: Error code

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-63

Special Note

As a supplement of "bFileTimeStamp" (8 bytes), high-order four bytes indicate time in the MS-DOS format, and low-
order four bytes indicate date in the MS-DOS format (hexadecimal string).
The MS-DOS time/date format is as follows:
(Example: 20C42C22 is expressed as 2002/1/2 4:6:8. "2C22" is hexadecimal notation of date, and "20C4" is
hexadecimal notation of time.)

Specify time in the MS-DOS format. Time is packed in 16 bits in the following format:

When reading the file list, file names shorter than 8 characters or file extensions shorter than 3 characters are displayed
as bFileName[8+1] or bExt[3+1] respectively, as shown below.

(Example) When ABC.D is the file name and file extension

Other than GP series node

GP series node

Bit Description

0 to 4 Day (1 to 31)

5 to 8 Month (1 = January, 2 = February , 12 = December)

9 to 15 Year: Expressed with the number of elapsed years from 1980. The actual year is the sum of 1980
and a value of these bits.

Bit Description

0 to 4 Number of seconds divided by two (0 to 29)

5 to 10 Minute (0 to 59)

11 to 15 Hour (0 to 23, on 24-hour basis)

Read Source Node Other than GP series node GP series node

bFileName[8+1]

When the file name is shorter than 8
characters, null (0x00) is stored at the end of
the original file name, and undefined values
are stored after null.

When the file name is shorter than 8
characters, single-byte spaces (0x20) are
stored after the original file name, with null
(0x00) as the final character.

bExt[3+1]

When the file extension is shorter than 3
characters, null (0x00) is stored at the end of
the original file extension, and undefined
values are stored after null.

When the file extension is shorter than 3
characters, single-byte spaces (0x20) are
stored after the original file extension, with
null (0x00) as the final character.

bFileName[8+1] 0x410x420x430x00******************** (**** indicate an undefined value)

bExt[3+1] 0x440x00******** (**** indicate an undefined value)

bFileName[8+1] 0x410x420x430x200x200x200x200x200x00

bExt[3+1] 0x440x200x200x00

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-64

Function Reading file list from CF card (including the sub-folders or below in an optional folder
name)

Outputs a list of files from the CF card inserted in a display unit node into a file specified with the parameter. You can
specify an optional file to save the file list. Optionally, you can define the folder with the list of files you want to get.
The file list to read is defined by searching the folder passed by the parameter, including sub-folders, for any files.

CF Card: INT WINAPI EasyGetListRecursivelyInCfCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount,
LPCSTR sSaveFileName);
SD Card: INT WINAPI EasyGetListRecursivelyInSdCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount,
LPCSTR sSaveFileName);

Argument
sNodeName: Name of node to output file list
sDirectory: Name of folder to receive file list (All capitals)
oiCount: Number of output files
sSaveFileName: Name of file to save output directory information. The specified file

stores binary data of the alignment type specified with stEasyRecursivelyDirInfo,
in the quantity specified with the return value of oiCount.

struct stEasyRecursivelyDirInfo {
BYTE bFileName[8+1];// File name (Terminated with "0")
BYTE bExt[3+1];// File extension (Terminated with "0")
BYTE bDummy[3];// Dummy
DWORD dwFileSize;// File size
BYTE bFileTimeStamp[8+1];// File timestamp (Terminated with "0")
BYTE bFolderName[260+1];// Folder name (Terminated with "0", "0" is also
stored in remaining portions.
BYTE bDummy2[2];// Dummy 2
} ;

Return value
Normal end: 0
Abnormal end: Error code

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-65

Special Note
If you select a GP Series node with this API, an error is generated.

As a supplement of "bFileTimeStamp" (8 bytes), high-order four bytes indicate time in the MS-DOS format, and low-
order four bytes indicate date in the MS-DOS format (hexadecimal string).
The MS-DOS time/date format is as follows:
(Example: 20C42C22 is expressed as 2002/1/2 4:6:8. "2C22" is hexadecimal notation of date, and "20C4" is
hexadecimal notation of time.)

Specify time in the MS-DOS format. Time is packed in 16 bits in the following format:

When reading the file list , file names shorter than 8 characters or file extensions shorter than 3 characters are displayed
as bFileName[8+1] or bExt[3+1] respectively, as shown below.

(Example) When ABC.D is the file name and file extension

Bit Description

0 to 4 Day (1 to 31)

5 to 8 Month (1 = January, 2 = February , 12 = December)

9 to 15 Year: Expressed with the number of elapsed years from 1980. The actual year is the sum of 1980
and a value of these bits.

Bit Description

0 to 4 Number of seconds divided by two (0 to 29)

5 to 10 Minute (0 to 59)

11 to 15 Hour (0 to 23, on 24-hour basis)

bFileName[8+1] When the file name is shorter than 8 characters, null (0x00) is stored at the end of the
original file name, and undefined values are stored after null.

bExt[3+1] When the file extension is shorter than 3 characters, null (0x00) is stored at the end of the
original file extension, and undefined values are stored after null.

bFileName[8+1] 0x410x420x430x00******************** (**** indicate an undefined value)

bExt[3+1] 0x440x00******** (**** indicate an undefined value)

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-66

Function Reading file list from CF card (Type specification)

Outputs a list of files from the CF card inserted in a display unit into a file specified with the parameter. Only the file list
in the directory specified with "sDirectory" can be output.

INT WINAPI EasyGetListInCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount, LPCSTR
sSaveFileName);

Argument
sNodeName: Name of node to output file list
sDirector: Name of directory to output list (All capitals) This API supports only the
following directories:

LOG (Logging data)
TREND (Trend data)
ALARM (Alarm data)
CAPTURE (Capture data)
FILE (Filing data)

oiCount: Number of output files
sSaveFileName: Name of file to save output directory information. The specified file

stores binary data of the alignment type specified with stEasyDirInfo, in the
quantity specified with the return value of oiCount.

struct stEasyDirInfo {
BYTE bFileName[8+1];// File name (Terminated with "0")
BYTE bExt[3+1];// File extension (Terminated with "0")
BYTE bDummy[3];// Dummy
DWORD dwFileSize;// File size
BYTE bFileTimeStamp[8+1];// File timestamp (Terminated with "0")
BYTE bDummy2[3];// Dummy 2
} ;

Return value
Normal end: 0
Abnormal end: Error code

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-67

Special Note
When reading the file list, file names shorter than 8 characters or file extensions shorter than 3 characters are displayed
as bFileName[8+1] or bExt[3+1] respectively, as shown below.

(Example) When ABC.D is the file name and file extension

Other than GP series node

GP series node

Read Source Node Other than GP series node GP series node

bFileName[8+1]

When the file name is shorter than 8
characters, null (0x00) is stored at the end of
the original file name, and undefined values
are stored after null.

When the file name is shorter than 8
characters, single-byte spaces (0x20) are
stored after the original file name, with null
(0x00) as the final character.

bExt[3+1]

When the file extension is shorter than 3
characters, null (0x00) is stored at the end of
the original file extension, and undefined
values are stored after null.

When the file extension is shorter than 3
characters, single-byte spaces (0x20) are
stored after the original file extension, with
null (0x00) as the final character.

bFileName[8+1] 0x410x420x430x00******************** (**** indicate an undefined value)

bExt[3+1] 0x440x00******** (**** indicate an undefined value)

bFileName[8+1] 0x410x420x430x200x200x200x200x200x00

bExt[3+1] 0x440x200x200x00

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-68

Function Reading file list from CF card (Including sub-folders in Type specification)

Outputs a list of files from the CF card inserted in a display unit into a file specified with the parameter. Only the file list
in the directory specified with "sDirectory" can be output. Get the list of files to read by searching all the folders in the
directory specified by "sDirectory".

INT WINAPI EasyGetListRecursivelyInCard(LPCSTR sNodeName, LPCSTR sDirectory, INT* oiCount, LPCSTR
sSaveFileName);

Argument
sNodeName: Name of node to output file list
sDirector: Name of directory to output list (All capitals) This API supports only the
following directories:

LOG (Logging data)
TREND (Trend data)
ALARM (Alarm data)
CAPTURE (Capture data)
FILE (Filing data)

oiCount: Number of output files
sSaveFileName: Name of file to save output directory information. The specified file

stores binary data of the alignment type specified with stEasyRecursiveDirInfo, in
the quantity specified with the return value of oiCount.

struct stEasyDirInfo {
BYTE bFileName[8+1];// File name (Terminated with "0")
BYTE bExt[3+1];// File extension (Terminated with "0")
BYTE bDummy[3];// Dummy
DWORD dwFileSize;// File size
BYTE bFileTimeStamp[8+1];// File timestamp (Terminated with "0")
BYTE bFolderName[260+1];// Folder Name (Terminated with "0", "0" is also
stored in remaining portions.)
BYTE bDummy2[2];// Dummy 2
} ;

Return value
Normal end: 0
Abnormal end: Error code

Special Note
When you set a GP Series node in this API, it will become an error.
When reading the file list, file names shorter than 8 characters or file extensions shorter than 3 characters are displayed
as bFileName[8+1] or bExt[3+1] respectively, as shown below.

(Example) When ABC.D is the file name and file extension

bFileName[8+1] When the file name is shorter than 8 characters, null (0x00) is stored at the end of the
original file name, and undefined values are stored after null.

bExt[3+1] When the file extension is shorter than 3 characters, null (0x00) is stored at the end of the
original file extension, and undefined values are stored after null.

bFileName[8+1] 0x410x420x430x00******************** (**** indicate an undefined value)

bExt[3+1] 0x440x00******** (**** indicate an undefined value)

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-69

Function Reading file from CF card (Optional file name specification)

Reads a specified file from the CF card. You can specify an optional file to read.

CF Card: INT WINAPI EasyFileReadInCfCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR sFileName,
LPCSTR pWriteFileName, DWORD* odwFileSize);
SD Card: INT WINAPI EasyFileReadInSdCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR sFileName,
LPCSTR pWriteFileName, DWORD* odwFileSize);

Argument
sNodeName: Name of node to output file list
sFolderName: Name of folder containing source file to be read from CF card (Up to 32

single-byte characters)
sFileName: Name of source file to be read from CF card (Up to 8.3 format character

string)
pWriteFileName : File name of read CF file (Full path)
odwFileSize: Size of read CF file

Return value
Normal end: 0
Abnormal end: Error code

Special Note

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-70

Function Reading file from CF card (Type specification)

Reads a specified file from the CF card. Only the file type specified with "pReadFileType" can be read.

INT WINAPI EasyFileReadCard(LPCSTR sNodeName, LPCSTR pReadFileType, WORD wReadFileNo, LPCSTR
sWriteFileName, DWORD* odwFileSize);

Argument
sNodeName: Name of node to output file list
pReadFileType: Type of source file to be read from CF card (See <Special Note>)
wReadFileNo: File number of source file to be read from CF card
sWriteFileName : File name of read CF file (Full path)
odwFileSize: Size of read CF file

Return value
Normal end: 0
Abnormal end: Error code

Special Note
This API supports the following file types. Only the files saved in a specified CF card folder can be read.

File types supported for GP Series node

Data type File type Target folder

Filing data ZF FILE

CSV data ZR FILE

Image screen ZI DATA

Sound data ZO DATA

Trend graph data ZT TREND

Sampling data ZS TREND

Alarm block 4 to 8 Z4 to Z8 ARAM

Logging data ZL LOG

Alarm Log ZG ALARM

Alarm History ZH ALARM

Alarm Active ZA ALARM

Screen data backup ZC MRM

GP Screen data (Jpeg) CP CAPTURE

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-71

File types supported for GP4000/LT4000 series node, GP3000 Series node and WinGP node

*1) When using GP-Pro EX's [Set number of files in destination folder on external storage] feature, reads the files
in sub-folders (for example: "ALARM\00000"). However, if you are using a version of GP-Pro EX before
V3.12, or a version of Pro-server EX before V1.32, reads only the files in the [ALARM] or [SAMP**] folder,
regardless of this setting.

Function Writing file into CF card (Optional file name specification)

Writes a specified file into the CF card. You can specify an optional file to write.

CF Card: INT WINAPI EasyFileWriteInCfCard(LPCSTR sNodeName, LPCSTR pReadFileName, LPCSTR
sFolderName, LPCSTR sFileName);
SD Card: INT WINAPI EasyFileWriteInSdCard(LPCSTR sNodeName, LPCSTR pReadFileName, LPCSTR
sFolderName, LPCSTR sFileName);

Argument
sNodeName: Name of node to write file
pReadFileName: Name of source file to be written into CF card (Full path)
sFolderName: Name of folder containing target file in CF card (Up to 32 single-byte

characters)
sFileName: Name of target file in CF card (Up to 8.3 format character string)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Data type File type Target folder

Filing data ZF or F FILE

CSV data ZR FILE

Image screen ZI or I DATA

Sound data ZO or O DATA

Alarm block 1 Z1 or ZA ALARM *1

Alarm block 2 Z2 or ZH ALARM *1

Alarm block 3 Z3 or ZG ALARM *1

Alarm block 4 to 8 Z4 to Z8 ALARM *1

Sampling group 1 to 64 ZS1 to ZS64 SAMP01 to SAMP64 *1

GP Screen data (Jpeg) CP CAPTURE

GP-PRO/PB Trend graph data (compatible) ZT TREND

GP-PRO/PB Sampling data (compatible) ZS TREND

GP-PRO/PB Logging data (compatible) ZL LOG

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-72

Function Writing file into CF card (Type specification)

Writes a specified file into the CF card. Only the file type specified with "pWriteFileType" can be written.

INT WINAPI EasyFileWriteCard(LPCSTR sNodeName, LPCSTR pReadFileName, LPCSTR sWriteFileType, WORD
wWriteFileNo);

Argument
sNodeName: Name of node to write file
pReadFileName: Name of source file to be written into CF card (Full path)
sWriteFileType: Type of target file in CF card

(See <Special Note> of the function for "Reading file into CF card (Type
specification)")

wWriteFileNo: File number of target file in CF card

Return value
Normal end: 0
Abnormal end: Error code

Special Note
When using GP-Pro EX's [Set number of files in destination folder on external storage] feature, writes the files in sub-
folders (for example: "ALARM\00000"). However, if you are using a version of GP-Pro EX before V3.12, or a version
of Pro-server EX before V1.32, writes only the files in the [ALARM] or [SAMP**] folder, regardless of this setting.

Function Deleting file from CF card (Optional file)

Deletes a specified file from the CF card. You can specify an optional file to delete.

CF Card: INT WINAPI EasyFileDeleteInCfCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR
sFileName);
SD Card: INT WINAPI EasyFileDeleteInSdCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR
sFileName);

Argument
sNodeName: Name of node containing file to be deleted
sFolderName: Name of folder containing file to be deleted from CF card (Up to 32

single-byte characters)
sFileName: Name of file to be deleted from CF card (Up to 8.3 format character string)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-73

Function Deleting file from CF card (Type specification)

Deletes a specified file from the CF card. Only the file type specified with "pDeleteFileType" can be deleted.

INT WINAPI EasyFileDeleteCard(LPCSTR sNodeName, LPCSTR pDeleteFileType, WORD wDeleteFileNo);

Argument
sNodeName: Name of node containing file to be deleted
pDeleteFileType: Type of file to be deleted from CF card (See <Special Note>)
wDeleteFileNo: File number to be deleted from CF card

Return value
Normal end: 0
Abnormal end: Error code

Special Note
If this function is executed for a file that does not exist in the CF card, it is not judged as an error, and the processing
ends normally.
This API supports the following file types. Only the files saved in a specified CF card folder can be delete.

File types supported for GP Series node

Data type File type Target folder

Filing data ZF FILE

CSV data ZR FILE

Image screen ZI DATA

Sound data ZO DATA

Trend graph data ZT TREND

Sampling data ZS TREND

Alarm block 4 to 8 Z4 to Z8 ARAM

Logging data ZL LOG

Alarm Log ZG ALARM

Alarm History ZH ALARM

Alarm Active ZA ALARM

Screen data backup ZC MRM

GP screen data (Jpeg) CP CAPTURE

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-74

File types supported for GP4000/LT4000 Series node, GP3000 Series node and WinGP node

*1) When using GP-Pro EX's [Set number of files in destination folder on external storage] feature, delets the files
in sub-folders (for example: "ALARM\00000"). However, if you are using a version of GP-Pro EX before
V3.12, or a version of Pro-server EX before V1.32, delets only the files in the [ALARM] or [SAMP**] folder,
regardless of this setting.

Function Renaming file in CF card

Renames a specified file in the CF card.

CF Card: INT WINAPI EasyFileRenameInCfCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR
sFileName,LPCSTR sFileRename);
SD Card: INT WINAPI EasyFileRenameInSdCard(LPCSTR sNodeName, LPCSTR sFolderName, LPCSTR
sFileName,LPCSTR sFileRename);

Argument
sNodeName: Name of node to write file
sFolderName: Name of folder containing file to be renamed in CF card (Up to 32 single-

byte characters)
sFileName: Name to file to be renamed in CF card (Up to 8.3 format character string)
sFileRename: New file name (Up to 8.3 format character string)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Data type File type Target folder

Filing data ZF or F FILE

CSV data ZR FILE

Image screen ZI or I DATA

Sound data ZO or O DATA

Alarm block 1 Z1 or ZA ALARM *1

Alarm block 2 Z2 or ZH ALARM *1

Alarm block 3 Z3 or ZG ALARM *1

Alarm block 4 to 8 Z4 to Z8 ALARM *1

Sampling group 1 to 64 ZS1 to ZS64 SAMP01 to SAMP64 *1

GP Screen data (Jpeg) CP CAPTURE

GP-PRO/PB Trend graph data (compatible) ZT TREND

GP-PRO/PB Sampling data (compatible) ZS TREND

GP-PRO/PB Logging data (compatible) ZL LOG

CF Card / SD Card APIs

Pro-Server EX Reference Manual 27-75

Function Acquiring information on CF card empty space

Acquires information on empty space in the CF card connected to a specified entry node.

CF Card: INT WINAPI EasyGetCfFreeSpace(LPCSTR sNodeName,INT* oiUnallocated);
CF Card: INT WINAPI EasyGetCfFreeSpaceEx(LPCTSTR sNodeName,INT* pioUnallocatedL,INT*
pioUnallocatedH);
SD Card: INT WINAPI EasyGetSdFreeSpace(LPCSTR sNodeName,INT* oiUnallocated);
SD Card: INT WINAPI EasyGetSdFreeSpaceEx(LPCTSTR sNodeName,INT* pioUnallocatedL,INT*
pioUnallocatedH);

Argument
sNodeName: Name of node to output file list
oiUnallocated (*1): Empty space in CF card (number of bytes)
pioUnallocatedL: (Out) Empty space in bottom 4 bytes
pioUnallocatedH: (Out) Empty space top 4 bytes

Return value
Normal end: 0
Abnormal end: Error code

Special Note
*1 When the free space exceeds the range for INT, use the CF card (expansion) or SD card (expansion) function.

Function FTP passive mode setup

'Pro-Server EX' uses a special protocol to access the CF card in a GP Series node. However, to access a GP4000/
LT4000 Series node, GP3000 Series node and WinGP node, FTP protocol is used.
For FTP protocol, 'Pro-Server EX' supports two modes: normal mode and passive mode.
This API specifies the mode of FTP protocol.

INT WINAPI EasyFileSetPassiveMode(INT iPassive);

Argument
iPassive: (In) 0: Normal mode
Other than 0: Passive mode

At initialization of ProEasy, the FTP protocol is set to "Normal mode".

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Binary Date and Time / Text Display Conversion

Pro-Server EX Reference Manual 27-76

27.8 Binary Date and Time / Text Display Conversion

Convert from binary value to text API

Function Binary value text conversion (Time-type)

Function to convert binary value to TIME-type string.

INT WINAPI EasyTIMEToString(DWORD dwData, LPSTR osTime);

Argument
dwData: (In) Binary value prior to conversion
osTime: (Out) Converted text string*1

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format

Output Format
%s%02ud%02uh%02um%02us%03ums (sign, day, hours, minutes, seconds, milliseconds)
Output Example
(1) 01d02h03m04s005ms
(2) -02d03h04m05s006ms

Function Binary value text conversion (TIME_OF_DAY-type)

Function to convert binary value to TIME_OF_DAY-type string.

INT WINAPI EasyTIME_OF_DAYToString(DWORD dwData, LPSTR osTod);

Argument
dwData: (In) Binary value prior to conversion
osTod: (Out) Converted text string*1

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format

Output Format
%02u:%02u:%02u.%03u (hours, minutes, seconds, milliseconds)
Output Example
23:59:59.999

31 24 16 8 0
Elapsed time in milliseconds (Signed)

31 27 21 15 9 0

GMT bit 0

Error bit 0

Reserved

0
Hours Minutes Seconds Milliseconds

Binary Date and Time / Text Display Conversion

Pro-Server EX Reference Manual 27-77

*1 Make sure the area is 32 bytes or greater.
*2 For information about each device access API, refer to 27.2 Device Access APIs.

Function Binary value text conversion (DATE-type)

Function to convert binary value to DATE-type string.

INT WINAPI EasyDATEToString(DWORD dwData, LPSTR osDate);

Argument
dwData: (In) Binary value prior to conversion
osDate: (Out) Converted text string*1

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format

Output Format
%04u-%02d-%02u (year, month, date)
Output Example
2012-01-01

Function Binary value text conversion (DATE_AND_TIME-type)

Function to convert binary value to DATE_AND_TIME-type string.

INT WINAPI EasyDATE_AND_TIMEToString(QWORD qwData, LPSTR osDt);

Argument
dwData: (In) Binary value prior to conversion
osDt: (Out) Converted text string*1

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format

Output Format
%04u-%02u-%02u-%02u:%02u:%02u.%03u (year, month, date, hours, minutes, seconds, milliseconds)
Output Example
2012-01-02-03:04:05.006

31 24 21 8 4 0

Error bit 0

Reserved

0
Day 0 Year Month Date

63 31 0

Error bit 0

Date Time

Error bit 0

Binary Date and Time / Text Display Conversion

Pro-Server EX Reference Manual 27-78

Convert from text to binary value API

Function INT WINAPI EasyStringToTIME()

Function to convert TIME-type string to a binary value.

INT WINAPI EasyStringToTIME(LPCSTR sTime, DWORD *pdwData);

Argument
sTime: (In) Text string prior to conversion
pdwData: (Out) Converted binary value

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format
%s%02ud%02uh%02um%02us%03ums (sign, day, hours, minutes, seconds, milliseconds)

• Inputs all the items in the setup range as per the input format.

• Setup each item so that when converted to milliseconds, the total results in a value between -2,147,483,648

and 2,147,483,647.

Input Example
01d02h03m04s005ms

Function INT WINAPI EasyStringToTIME_OF_DAY()

Function to convert TIME_OF_DAY-type string to a binary value.

INT WINAPI EasyStringToTIME_OF_DAY(LPCSTR sTod, DWORD *pdwData);

Argument
sTod: (In) Text string prior to conversion
pdwData: (Out) Converted binary value

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format

%02u:%02u:%02u.%03u (hours, minutes, seconds, milliseconds)

• Inputs all the items in the setup range as per the input format.

Input Example
23:59:59.999

Day Hours Minutes Seconds Milliseconds

Setup range -24...24 0...23 0...59 0...59 0...999

Units (separator) d h m s ms

Hours Minutes Seconds Milliseconds

Setup range 0...23 0...59 0...59 0...999

Units (separator) : : .

Binary Date and Time / Text Display Conversion

Pro-Server EX Reference Manual 27-79

*1 For information about each device access API, refer to 27.2 Device Access APIs.

Function INT WINAPI EasyStringToDATE()

Function to convert DATE-type string to a binary value.

INT WINAPI EasyStringToDATE(LPCSTR sDate, DWORD *pdwData);

Argument
sDate: (In) Text string prior to conversion
pdwData: (Out) Converted binary value

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format
%04u-%02d-%02u (year, month, date)

• Inputs all the items in the setup range as per the input format.

Input Example
2012-01-01

Function INT WINAPI EasyStringToDATE_AND_TIME()

Function to convert DATE_AND_TIME-type string to a binary value.

INT WINAPI EasyStringToDATE_AND_TIME(LPCSTR sDt, QWORD *pqwData);

Argument
sDt: (In) Text string prior to conversion
pdwData: (Out) Converted binary value

Return value
Normal end: 0
Abnormal end: Error code

Special Note
Input Format
%04u-%02u-%02u-%02u:%02u:%02u.%03u (year, month, date, hours, minutes, seconds, milliseconds)

• Inputs all the items in the setup range as per the input format.

Input Example
2012-03-21-01:02:03.004

Year Month Date

Setup range 1970...8191 1...12 1...31

Units (separator) - -

Year Month Date Hours Minutes Seconds Milliseconds

Setup range 1970...8191 1...12 -24...24 0...23 0...59 0...59 0...999

Units (separator) - - - : : .

Other APIs

Pro-Server EX Reference Manual 27-80

27.9 Other APIs

Function Reading time from GP (DWORD-type)

Acquires current time of a specified node as a DWORD-type value. This function is valid only for the time saved in 6
words from LS2048.

DWORD WINAPI EasyGetGPTime(LPCSTR sNodeName, DWORD* odwTime);

Argument
sNodeName: Name of target node (A Pro-Server EX node cannot be specified.)
odwTime: Acquired time (Time is acquired as a value of DWORD type, (substantially,

time_t type defined by ANSI).)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Reading time from GP (VARIANT-type)

Acquires current time of a specified node as a Variant-type value. This function is valid only for the time saved in 6
words from LS2048.

DWORD WINAPI EasyGetGPTimeVariant(LPCSTR sNodeName, LPVARIANT ovTime);

Argument
sNodeName: Name of target node (A Pro-Server EX node cannot be specified.)
ovTime: Acquired time (Time is acquired as a value of VARIANT type. Internal

possessing format is "Date".)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Reading time from GP (STRING-type)

Acquires current time of a specified node as an LPTSTR-type character string. This function is valid only for the time
saved in 6 words from LS2048.

DWORD WINAPI EasyGetGPTimeString(LPCSTR sNodeName, LPCSTR sFormat, LPSTR osTime);

Argument
sNodeName: Name of target node (A Pro-Server EX node cannot be specified.)
pFormat: String to specify the format of time to be acquired as a string. The format

specification codes subsequent to the percentage (%) symbol are changed as shown
in <Special Note>.
Other characters are expressed without a change.

osTime: Time acquired as a string (If a memory area larger than the acquired string length
+ 1 (NULL) is not secured, unexpected memory destruction occurs. To prevent
this, you must secure a memory area larger than the expected string length + 1
(NULL). Otherwise, the operation cannot be guaranteed.)

Return value
Normal end: 0
Abnormal end: Error code

Other APIs

Pro-Server EX Reference Manual 27-81

Special Note
The format specification codes subsequent to the percentage (%) symbol are changed to those listed in the table below.
Other characters are expressed without a change. For example, if "%Y_%M %S" is specified, an actual time of "2006/
1/2 12:34:56" is expressed as a string of "2006_34 56".

* 1: If "#" is added before d, H, I, j, m, M, S, U, w, W, y or Y (ex. %#d), leading "0" will be deleted. (ex. "05" is
expressed as "5".)

* 2: If "#" is added before a, A, b, B, p, X, z, Z or % (ex. %#a), "#" will be ignored.

Format

specification code
Folder

%a Abbreviated name of day of week (*2)

%A Formal name of day of week (*2)

%b Abbreviated name of month (*2)

%B Formal name of month (*2)

%c Expression of date and time depending on locale

%#c Longer expression of date and time depending on locale

%d Decimal expression of day of month (01 to 31) (*1)

%H Time expression on 24-hour basis (00 to 23) (*1)

%I Time expression on 12-hour basis (01 to 12) (*1)

%j Decimal expression of day of year (001 to 366) (*1)

%m Decimal expression of month (01 to 12) (*1)

%M Decimal expression of minute (00 to 59) (*1)

%p AM/PM division for current locale (*2)

%S Decimal expression of second (00 to 59) (*1)

%U Decimal expression of serial week number. Sunday is regarded as the first day of the week.
(00 to 53) (*1)

%w Decimal expression of day of week. Sunday is regarded as "0 ". (0 to 6) (*1)

%W Decimal expression of serial week number. Monday is regarded as the first day of the week.
(00 to 53) (*1)

%x Expression of date for current locale

%#x Longer expression of date for current locale

%X Expression of time for current local (*2)

%y Decimal expression of low-order 2 digits of the dominical year (00 to 99) (*1)

%Y Decimal expression of 4 digits of the dominical year (*1)

%z, %Z Name or abbreviated name of time zone. If time zone is unknown, leave it blank. (*2)

%% Percentage symbol (*2)

Other APIs

Pro-Server EX Reference Manual 27-82

Function Reading time from GP (STRING VARIANT-type)

Acquires current time of a specified node as a Variant-type character string. This function is valid only for the time
saved in 6 words from LS2048.

DWORD WINAPI EasyGetGPTimeStringVariant(LPCSTR sNodeName, LPCSTR sFormat, LPVARIANT ovTime);

Argument
sNodeName: Name of target node (A Pro-Server EX node cannot be specified.)
pFormat: String to specify the format of time to be acquired as a string. The format

specification codes subsequent to the percentage (%) symbol are changed to those
listed below. Other characters are expressed without a change. (For details, refer to
<Special Note> of "Reading time from GP (STRING-type)".)

ovTime: Time acquired as a string (Time is acquired as VARIANT type. Internal
possessing format is "BSTR".)

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Function Reading entry node status

Acquires connected display unit status. Since the response time-out value can be changed, this function can be used to
check connection status.

Single
INT WINAPI GetNodeProperty(LPCSTR sNodeName,DWORD dwTimeLimit,LPSTR osGPType,LPSTR
osSystemVersion,LPSTR osComVersion,LPSTR osECOMVersion);
Multi
INT WINAPI GetNodePropertyM(HANDLE hProServer,LPCSTR sNodeName,DWORD dwTimeLimit,LPSTR
osGPType,LPSTR osSystemVersion,LPSTR osComVersion,LPSTR osECOMVersion);

Argument
hProServer: (In) Pro-Server handle
sNodeName: (In) Name of node to read status
dwTimeLimit: (In) Response time-out setting value

(If "0" is specified, it is set to the default value of 3000 ms.)
The setting range is from 1 to 2,147,483,647. (Unit: ms)

The API returns status information on the target node to the following area.
Secure an area of at least 32 bytes for each item.
osGPType: (Out) Display unit model code
osSystemVersion: (Out) Display unit system version
osComVersion: (Out) PLC protocol driver version

This item is blank except for GP Series nodes.
osECOMVersion: (Out) 2way driver version

This item is blank except for GP Series nodes.

Return value
Normal end: 0
Abnormal end: Error code

Special Note

Other APIs

Pro-Server EX Reference Manual 27-83

Function Acquiring symbol/group byte size

Acquires the total number of bytes required to access a device symbol or group symbol.

INT WINAPI SizeOfSymbol(LPCSTR sNodeName,LPCSTR sSymbolName,INT* oiByteSize);

Argument
sNodeName: (In) Name of entry node with Device/PLC name
sSymbolName: (In) Name of target device or symbol name
oiByteSize: (Out) Byte size acquired

Return value
Normal end: 0
Abnormal end: Error code

Special Note
For "sSymbolName", a device symbol, non-alignment group, whole alignment group, or an element of alignment group
can be specified.

Function Acquiring number of group members

Acquires the number of members of a group or symbol sheet (total number of symbols and group members).

INT WINAPI GetCountOfSymbolMember(LPCSTR sNodeName,LPCSTR sSymbolName,INT* oiCountOfMember);

Argument
sNodeName: (In) Name of entry node with Device/PLC name
sSymbolName: (In) Name of target group symbol or symbol sheet
oiCountOfMember: (Out) Number of members acquired

Return value
Normal end: 0
Abnormal end: Error code

Special Note
When a group symbol exists in a specified group symbol, the number of members is counted as one, even if multiple
device symbols exist in the inner group symbol.

Function Acquiring symbol/group/symbol sheet definition information

Acquires definition information (data type, data quantity, etc.)

INT WINAPI GetSymbolInformation(LPCSTR sNodeName,LPCSTR sSymbolName,INT
iMaxCountOfSymbolMember,LPSTR osSymbolSheetName,SymbolInformation* oSymbolInformation,INT*
oiGotCountOfSymbolMember);

Argument
sNodeName: (In) Name of entry node with Device/PLC name
sSymbolName: (In) Name of symbol/group/symbol sheet
iMaxCountOfSymbolMember: (In) Specify a value of the maximum count of desired

information + 1.
Specify the number of "oSymbolInformation" prepared.

osSymbolSheetName: (Out) The API returns the name of symbol sheet that contains the
symbol specified with sSymbolName. Prepare 66 bytes or larger work.

oSymbolInformation: (Out) The API returns acquired detail information in the alignment
structure.
Prepare work for the number specified with iMaxCountOfSymbolMember.

oiGotCountOfSymbolMember: (Out) The API returns the information quantity that has
returned to oSymbolInformation.

Return value
Normal end: 0
Abnormal end: Error code

Other APIs

Pro-Server EX Reference Manual 27-84

Special Note
• Structure of SymbolInformation
struct SymbolInformation
{

WORDm_wAppKind;// Data type, Symbol: 1 to 20, Group: 0x8000
WORDm_wDataCount; // Data quantity
DWORDm_dwSizeOf; // Number of bytes in buffer required for access
char m_sSymbolName[64+1];// Name of symbol or group
charm_bDummy1[3];// Reserve
charm_sDeviceAddress[256+1]; // Device address (For group, leave it blank.)
charm_bDummy2[3];// Reserve

};

Acquired information is returned to oSymbolInformation in the alignment structure specified with SymbolInformation.
Information on the symbol, group or sheet specified with sSymbolName is set in the first element.
Group member information is set in the second and subsequent elements, when sSymbolName indicates a group.
When sSymbolName indicates a sheet, information on the whole sheet is set in these elements.
When sSymbolName indicates a symbol, there is no information in the second or subsequent elements.

If the target symbol is a bit offset symbol, pay attention to the following points:

(1) When a bit offset symbol is directly specified as an information source symbol (a bit offset symbol is directly
specified for sSymbolName), "2" is set to m_dwSizeOf of SymbolInformation, or the first element of
oSymbolInformation, as the number of bytes required to access the bit symbol.
In this case, since the information source is one symbol, oSymbolInformation does not have second or subsequent
element.

(2) When a group symbol is specified as an information source symbol and the specified group contains a bit offset
symbol, "0" is set to m_dwSizeOf , or the second or subsequent element of oSymbolInformation, because it indicates the
access size required for a group access member.

• If the number of members is unknown, call GetCountOfSymbolMember() to acquire it. To call this function, prepare
SymbolInformation as the number of work of the specified count + 1.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-85

27.10 Precautions for Using APIs

About data types available with 'Pro-Server EX'
(1) Principal data types that can be specified with APIs, or received in response to APIs

(2) Data types available in special cases

Definition name
Decimal

value

Hexadecim

al value
Meaning of data

EASY_AppKind_Bit 1 0x0001 Bit Data

EASY_AppKind_SignedWord 2 0x0002 16-bit (Signed) Data

EASY_AppKind_UnsignedWord 3 0x0003 16-bit (Unsigned) Data

EASY_AppKind_HexWord 4 0x0004 16-bit (HEX) Data

EASY_AppKind_BCDWord 5 0x0005 16-bit (BCD) Data

EASY_AppKind_SignedDWord 6 0x0006 32-bit (Signed) Data

EASY_AppKind_UnsignedDWord 7 0x0007 32-bit (Unsigned) Data

EASY_AppKind_HexDWord 8 0x0008 32-bit (HEX) Data

EASY_AppKind_BCDDWord 9 0x0009 32-bit (BCD) Data

EASY_AppKind_Float 10 0xA Single-precision floating point data

EASY_AppKind_Real 11 0xB Double-precision floating point data

EASY_AppKind_Str 12 0xC Character string data

EASY_AppKind_SignedByte 13 0x0013 8 Bit (Signed) Data

EASY_AppKind_UnsignedByte 14 0x0014 8 Bit (Unsigned) Data

EASY_AppKind_HexByte 15 0x0015 8 Bit (HEX) Data

EASY_AppKind_BCDByte 16 0x0016 8 Bit (BCD) Data

EASY_AppKind_TIME 17 0x0017 TIME Data

EASY_AppKind_TIME_OF_DAY 18 0x0018 TIME_OF_DAY Data

EASY_AppKind_DATE 19 0x0019 DATE Data

EASY_AppKind_DATE_AND_TIME 20 0x0020 DATE_AND_TIME Data

Definition name
Decimal

value

Hexadecimal

value
Meaning of data

EASY_AppKind_NULL 0 0x0000
Indicates that the data type defined for a
symbol is used with the API that can use
the symbol as the device address.

EASY_AppKind_BOOL 513 0x0201 Handles bit data as Variant BOOL data per
bit.

EASY_AppKind_Group -32768 0x8000 Group symbol

EASY_AppKind_SymbolSheet -28672 0x9000 Symbol sheet

Precautions for Using APIs

Pro-Server EX Reference Manual 27-86

About entry node name with Device/PLC name
(1) Except for GP Series nodes, you can connect display units to multiple device/PLCs. To access these Device/

PLCs, you must specify the names of the entry node and Device/PLCs.

(2) For some arguments of the Pro-Server EX APIs, you may specify an entry node name only. For other

arguments, you must specify a Device/PLC name as well as the entry node name.

<How to specify a Device/PLC name>
To specify a D"evice/PLC name, add "." (dot) after the entry node name.

Example)

AGPNode.PLC1

(3) To access the memory link driver of display units (except those set up as GP Series nodes), specify

"#INTERNAL" as the Device/PLC name. (It can be omitted.)

(4) To access the memory link driver of display units (except those set up as GP Series nodes), specify

"#MEMLINK" as the Device/PLC name. (It cannot be omitted.)

(5) To access a GP Series node or Pro-Server EX node, you need not specify a Device/PLC name.

("." (dot) is not necessary.)

(6) For internal devices of display units (except those set up as GP Series nodes) and device/PLCs mapped to

"system area devices", you can omit the device/PLC name by defining the node with the device/PLC name.

In this case, however, 'Pro-Server EX' searches the target device for an internal device first, and then searches for

a Device/PLC assigned to the "system area device".

About symbol searching precedence
For the Device Access APIs of 'Pro-Server EX', you must specify the entry node name with Device/PLC name,

and the device address or device symbol as a character string. 'Pro-Server EX' judges according to the following

order of precedence whether the specified character string directly specifies the device address or a device

symbol.

(1) 'Pro-Server EX' searches the symbol sheet for a matching name. If the specified string exists in the symbol

sheet, it is regarded as a sheet.

(2) 'Pro-Server EX' regards the specified string as a group name or symbol, and searches a local symbol sheet. If

the specified string exists in the local symbol sheet, it is regarded as a local symbol.

(3) If the specified string does not exist in the local symbol sheet, 'Pro-Server EX' searches a global symbol sheet.

(In this case, the target global symbol sheet is that for the Device/PLC that has been specified with "entry node

name with Device/PLC name". Global symbol sheets for different Device/PLCs are not searched.)

(4) If the specified string does not exist in the global symbol sheet, it is regarded as a device address.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-87

Duplication of name
'Pro-Server EX' provides the following name categories:

(1) Node Name

(2) Device/PLC Name

(3) Trigger Condition Name

(4) Symbol Sheet Name

(5) Group/Symbol Name

(6) ACTION Name

In principle, 'Pro-Server EX' must not have a duplicated name, excepting the following cases:

(1) Duplication of a Device/PLC name causes no problem, if they belong to different entry nodes.

(2) Duplication of a group/symbol name causes no problem, if they belong to different entry nodes or different

Device/PLCs.

Duplication of global symbol name and local symbol name
When a Pro-Server EX API uses a symbol to specify a device address and the same symbol name exists for both

local symbol and global symbol, it is regarded as a local symbol.

Using Pro-Server EX API for multi-thread application
All functions of Pro-Server EX APIs are synchronous type. (Once a function is called, it will not be returned until

processing is completed.)

Therefore, when 'Pro-Server EX' accesses multiple entry nodes by using a single-thread application, processing is

executed for individual nodes in sequence.

On the other hand, with a multi-thread application, 'Pro-Server EX' can access another entry node through another

thread, even when one thread is used for access to one entry node.

Pro-Server EX APIs can be used for the multi-thread application.

To create a multi-thread application, pay attention to the following points:

(1) In principle, to execute a multi-thread application, use Multi-Handle functions.

(2) To use Multi-Handle functions, you must create Pro-Server EX handles. Use separate Pro-Server EX handles

for individual threads.

Even if multiple Pro-Server EX handles are created for one thread, there is no problem. However, you must not

use a Pro-Server EX handle that has been created for another thread.

To release a Pro-Server EX handle, use the same thread where the handle has been created.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-88

(3) To use a Pro-Server EX API, you must call EasyInit() first.

However, most Pro-Server EX APIs automatically call EasyInit() when each API is called before EasyInit().

Therefore, when using a single-thread application, you need not consider EasyInit() in your program.

(4) The thread where EasyInit() is called must exist until the end of application. If the thread where EasyInit() is

called is closed in the middle of application, the operation cannot be guaranteed.

(5) For general applications, the thread used to start an application will exist until the end of application.

(Normally, this applies to applications created by VB or VC.) Therefore, to create a multi-thread application, we

recommend you to call EasyInit() at the start of application.

Improving cache buffer update efficiency
(1) To use the cache function, you must register a device in the cache buffer. (Register a device on the Pro-Studio

EX cache registration screen, or by using the cache buffer control APIs.)

Performance of the whole system varies depending on the registration method.

(2) To select a device to be registered, use the device access log function to identify the device that 'Pro-Server

EX' accesses.

(3) In principle, you should cache-register a device that has been frequently read.

(4) When multiple devices are registered, the processing speed becomes higher if these devices can be registered

in series.

(Ex.1) When LS100 and LS101 are registered in a cache buffer, the processing speed becomes higher if two

devices are registered in series from LS100, rather than separately registered. Also, if the interval between two

devices is only several words, the processing speed may be increased if these devices are registered in series.

(Ex.2) When LS100 and LS103 are registered in a cache buffer, the processing speed becomes higher if four

devices are registered in series from LS100, rather than separately registered.

(5) When bit devices are registered in series, the processing speed becomes higher if they can be registered as

word devices.

(Ex.) When devices for 20 bits are registered in series from LS123401, the processing speed becomes higher if

they are registered in two words from LS1234.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-89

16-bit access operation for device with physically 32-bit width
(1) When a 16-bit symbol is assigned to a device with a physically 32-bit width, and the device is accessed with

the 16-bit symbol, or when 16-bit data type is directly specified to access a 32-bit device, 'Pro-Server EX' can

handle the 32-bit device as a 16-bit device.

In this case, 'Pro-Server EX' executes the following conversion for READ and WRITE APIs.

(2) The above conversion is executed during access using a data transfer function or API.

(3) When data is transferred between GP Series nodes, an error occures.

(4) With older versions of 'Pro-Server', if 16-bit access is executed for a device with physically 32-bit width, an

error occures.

16-bit access operation for device with physically 32-bit width
When a 32-bit symbol is assigned to a device with a physically 16-bit width, and the device is accessed with the

32-bit symbol, or when 32-bit data type is directly specified to access a 16-bit device, 'Pro-Server EX' can handle

the 16-bit device as a 32-bit device.

In this case, 'Pro-Server EX' handles a series of two devices with a 16-bit width as one device.

About Pro-Server auto start, forced closing and restart
(1) If 'Pro-Server EX' has not been started yet, calling a Pro-Server EX API automatically starts 'Pro-Server EX'

(excepting some APIs).

If 'Pro-Server EX' cannot start, the API always returns an error code.

(2) After 'Pro-Server EX' normally starts, calling the second or subsequent API will not start 'Pro-Server EX'

again, because 'Pro-Server EX' has already been started.

(3) If 'Pro-Server EX' is closed in the middle of application processing, and then an API is called ('Pro-Server EX'

has been closed when the second or subsequent API is called), the API will not start 'Pro-Server EX'. It returns an

error code.

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

0

0

0

0

(1)

(2)

(3)

(4)

When defining a 32-bit device as 16-bit type physically and reading it, data on High side is ignored.

When defining a 32-bit device as 16-bit type physically and writing it, 0 is always set on High side.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-90

(4) Do not close 'Pro-Server EX' in the middle of application processing.

Before closing 'Pro-Server EX', be sure to close the application first. (Do not call an API after closing 'Pro-Server

EX'.)

However, if 'Pro-Server EX' is manually restarted from the Windows START menu, the API executes Pro-Server

EX recovery processing, and tries to continue processing. If 'Pro-Server EX' can be recovered, it continues

processing. However, 'Pro-Server EX' may fail in recovery processing, depending on the previous closing method.

For example, recovery processing failures may occur in the following cases:

- When 'Pro-Server EX' is forcibly closed from Task Manager

- When 'Pro-Server EX' is closed during a call of an API

About specification of symbol index
Specification of symbol index is enabled only by a device name for an API. Specification of symbol index is to

specify a value in [] after a symbol name, as shown below. The symbol index indicates the device located ahead

from the device specified with the symbol name, by the number of devices specified by the "value" of the symbol

data type.

(Symbol name)[Value]

Example) Valve [2]

When valve symbol "D100" is specified as "16-bit signed", Valve [2] indicates D102. When "D100" is specified

as "32-bit unsigned", it indicates D104.

About queuing cache read and symbol cache read
When queuing cache read (queuing registration using a ReadDevice function (without "D") after

BeginQueuingRead) or symbol cache read (ReadSymbol (without "D")) is used, the operation varies depending

on which part of target devices has been cache-registered.

• When all target devices have been cache-registered: cache read is executed.

• When all target devices have not been cache-registered: direct read is executed.

• When only some of target devices have been cache-registered: Some of target devices are subjected to cache

read, and remaining devices are subjected to direct read. However, cache read is not applied to all of the

cache-registered devices. direct read may be applied to some of the cache-registered devices. If you have a

trouble in identifying the devices subjected to cache read, you should cache-register all target devices, or use a

Direct Read API instead of a Cache Read API.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-91

About APIs that cannot be used for .NET
The following APIs cannot be used for .NET. If these APIs are used, operations cannot be guaranteed.

• Symbol access (Byte access)

ReadDevice(), ReadDeviceD(), WriteDevice(), WriteDeviceD()

ReadDeviceM(), ReadDeviceDM(), WriteDeviceM(), WriteDeviceDM()

ReadSymbol(), ReadSymbolD(), WriteSymbol(), WriteSymbolD()

ReadSymbolM(), ReadSymbolDM(), WriteSymbolM(), WriteSymbolDM()

• Symbol size acquisition function

SizeOfSymbol()

About APIs that cannot be used in VB functions
You cannot use the following APIs in Visual Basic functions. If these APIs are used, we are unable to verify that

the functions will work.

ReadDeviceDATE_AND_TIME(), ReadDeviceDATE_AND_TIMEM(), ReadDeviceDATE_AND_TIMED(),

ReadDeviceDATE_AND_TIMEDM(),

WriteDeviceDATE_AND_TIME(), WriteDeviceDATE_AND_TIMEM(), WriteDeviceDATE_AND_TIMED(),

WriteDeviceDATE_AND_TIMEDM(),

EasyStringToDATE_AND_TIME(), EasyDATE_AND_TIMEToString()

When using simple DLL in a multi-thread application
All functions of Pro-Easy APIs are synchronous type. (Once a function is called, it will not be returned until

processing is completed.) Therefore, when accessing multiple entry nodes by using a single-thread application,

processing is executed for individual nodes in sequence. On the other hand, with a multi-thread application, you

can access another entry node through another thread, even when one thread is used for access to one entry node.

Pro-Easy APIs can be used for the multi-thread application.

To create a multi-thread application, pay attention to the following points:

1. In principle, to execute a multi-thread application, use Multi-Handle functions.

2. To use Multi-Handle functions, you must create 'Pro-Server EX' handles. Use separate 'Pro-Server EX'

handles for individual threads. Even if multiple 'Pro-Server EX' handles are created for one thread, there is

no problem. However, you must not use a 'Pro-Server EX' handle that has been created for another thread.

To release a 'Pro-Server EX' handle, use the same thread where the handle has been created.

3. To use 'Pro-Server EX API', you must call EasyInit() first. As most Pro-Server EX APIs automatically call

EasyInit() when each API is called before EasyInit(), you need not to consider EasyInit() call in your

program.

4. In the multi-thread program, the program must call EasyInit() first from the thread (main thread) which was

started first.When you call a Pro-Server EX API except from the main thread, call EasyInit() from the main

thread in advance.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-92

Message Process in Windows
Most of the Windows programs are event-driven, i.e. displaying the dialog box or playing the sounds according to

various events including "an icon is clicked", "a mouse is moved", or "a key is pressed".

When an event occurs, Windows will send the message showing the event type to the application.The application

confirms that the event occurs by receiving the message and executes each process.

In this manual, the part which receives messages in order and branches into each process (corresponding to

DoEvents for VB, or the part executing GetMessage() and DispatchMessage() for VC) is called the message

pump. The message pump is not much recognized because it is hidden in the VC or VB framework when

programming with VC or VB normally. However, unless this message pump operates properly, Windows

applications will cause unintended operation.

For example, when it takes long time for a routine to process a message and recover, the application fails to

process the event because it cannot receive an event which occurs in the meantime from Windows.

Example) Assume that messages are sent from Windows in the order of message 1 to message 2.

The message pump takes out the message 1 and calls the subroutine for message 1.

Then, when the message pump recovers from above, it takes out the following message (message 2) and calls the

subroutine for message 2.

In this case, assume that it takes long time for processing message 1. Then the message pump cannot process

message 2 without recovering.

Precautions for Using APIs

Pro-Server EX Reference Manual 27-93

In such case, force the message pump to run. (calling DoEvents,VC for VB, or GetMessage() and

DispatchMessage() for VC)

Windows applications are created assuming an application should run the message pump properly. "Pro-Server

EX API" runs the message pump using function for time-consuming process so as to avoid the case shown in

(Example).

Precautions for Using APIs

Pro-Server EX Reference Manual 27-94

Prohibition of API Double Call
'Pro-Server EX API' prohibits another communication while communicating with a party (while calling a 'Pro-

Server EX' function)(double-call). (Double-call is enabled if using the Multi-Handle. For details, refer to the

section of Multi-Handle.) However, as 'Pro-Server EX API' runs the message pump inside API, a user program

will start to run when an event occurs.

When API is called in the message process routine, double-call may occur.

Examples of double-call are shown below.

1. Double-call by pressing 2 buttons

Assume that there are 2 buttons, A and B. Device read API is called when A is pressed; device write API is

called when B is pressed.In this case, press the button B to cause the device write API to be called while

calling the device read API when pressing the button A, which leads API double-call and error occurs.

2. Double-call by timer

When periodical process is executed in the Windows program, timer events are often used. However, API double-

call may happen in the program using timer events due to careless programming.

(1) Call the device read API periodically per second, read the device and display it.

(2) Such programs as call the device write API when a button is pressed and write the value in the device causes

an error in the following cases.

When pressing the button (2) while reading a timer event (1), and the process (2) starts to run

When a timer event occurs while writing (2) and read (1)

Precautions for Using APIs

Pro-Server EX Reference Manual 27-95

Solutions to avoid API Double-Call
Solutions to avoid API double-call are shown below.

(1) Improve the algorithm not to execute API double-call in a user program.For example,

1. Timer should be always cancelled at the head of timer process routine and button process routine.

2. While a process is running by pressing a button, the button or another button should be ignored even if

pressed.

(2) API double-call does not occur if the 'Pro-Server EX' handle using multi-handle is different.

Use API in Multi-Handle type to set the handle of the program in the area which is possible to cause double-

call to different handle.

(3) Message should not be processed inside API

Call EasySetWaitType() by argument 2. However, in this case, other problems such as an application causes

unintended operation may occur, because other messages except the one which causes double-call will not be

processed.

How to read character strings in VB
(1) Use ReadDeviceStr to read character strings in VB

In this case, you need to specify (fix) the size of storing destination of character strings read in advance.'

Precautions for Using APIs

Pro-Server EX Reference Manual 27-96

(2) Use Variant type if you use ReadDeviceVariant to read character strings in VB, but not specify the size of

storing destination of character strings read in advance.

Note that display unit uses NULL for the completion of character strings. For that reason, you need to shorten the

character string if the character string obtained in the above method includes NULL as the completion of

character strings.

Sample functions to shorten character strings to NULL are shown below.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-97

27.11 Using APIs (Examples)

By using the read/write functions provided by 'Pro-Server EX', you can read/write data from/into a VB or VC

application.

This section describes the procedure for reading/writing a specified symbol with the APIs.

 "27.11.1 VB Support Function"

 "27.11.2 VC Support Function"

 "27.11.3 VB .NET Support Function"

 "27.11.4 C# .NET Support Function"

27.11.1 VB Support Function

VB: Declaration statement
1 Select [Programming Assist] - [VB & VBA] - [Declare Statement].

• You cannot use the DATE_AND_TIME data type or API functions in VB functions.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-98

The VB declaration statement is coped to the clipboard.

2 Start Microsoft Visual Basic, and select [New Project] from [File] on the menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-99

3 Select [Standard EXE], and click the [OK] button.

4 Select [Add Module] from [Project] on the Microsoft Visual Basic menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-100

5 Select [Module] in the [New] tab, and click the [Open] button.

6 Select [Paste] from [Edit] on the Microsoft Visual Basic menu, and paste the declaration statement (data on the

clipboard) to the added standard module.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-101

The deceleration statement is now pasted.

This is the end of the function (read/write function) declaration procedure.

The above 1 to 6 steps apply to both reading and writing applications.

The following procedure varies depending on whether the application is intended for reading or writing, and so is

explained individually.

To create a "Reading" application, refer to steps 7 to 16.

To create a "Writing" application, refer to steps 17 to 26.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-102

Creating "Reading" application
This section describes the procedure for creating an application that reads and displays data (16-bit signed data)

for three points with a click on [Command1].

7 Select [ListBox] and paste it to [Form1].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-103

8 Select [CommandButton] and paste it [Form1].

9 Select a target symbol name from those registered in 'Pro-Server EX'. (Select the symbol with first-address for

reading.)

Using APIs (Examples)

Pro-Server EX Reference Manual 27-104

10 Select [Programming Assist] - [VB & VBA] - [Read Function] on the menu.

The read function is copied to the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-105

11 Double-click [Command1] on [Form1], and paste the data on the clipboard (read function) between ‘private sub

Command1_Click()’ and ‘End Sub’.

12 Declare the area (Array) to store the read data. Ensure that the array type (in this example, Variant-type) is

matched with the data type of the symbol being used.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-106

13 Specify the first area (wData) to store the read data.

14 The List Box displays the read data for three points (wData(0), wData(1) and wData(2)) in sequence.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-107

15 Select [Start] from [Run] on the Microsoft Visual Basic menu.

16 Click [Command1]. Then, the List Box displays the data for three points from the symbol "_D0040_WORD".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-108

Creating "Writing" application
This section describes the procedure for creating an application that writes the data (16-bit signed data) entered

for three points with a click on [Command1].

17 Select [TextBox] and paste it to [Form1]. Paste [Text Box] for three items.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-109

18 Select [CommandButton] and paste it [Form1].

19 Select a target symbol name from those registered in 'Pro-Server EX'. (Select the symbol with first-address for

writting.)

Using APIs (Examples)

Pro-Server EX Reference Manual 27-110

20 Select [Programming Assist] - [VB & VBA] - [Write Function] on the menu.

The write function is copied to the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-111

21 Double-click [Command1] on [Form1], and paste the data on the clipboard (write function) between the Sub

statement and the End Sub statement.

22 Declare the area (alignment) to store the written data. Ensure that the alignment type (in this example, Variant-

type) is matched with the data type of the symbol being used.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-112

23 Set the data entered in [TextBox] into the alignment.

24 Specify the first area (wData) where the written data has been set.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-113

25 Select [Start] from [Run] on the Microsoft Visual Basic menu.

26 After entering values (for three points) in [TextBox], click [Command1]. Then, 'Pro-Server EX' executes the

writing of the data for three points from the symbol "_D0040_WORD".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-114

27.11.2 VC Support Function

For example, this section describes the procedure for creating a dialog-based application by using MFC

(Microsoft Foundation Class).

VC: Declaration statement

1 Start Microsoft Visual C++, and select [New] from [File].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-115

2 After selecting [MFC AppWizard(exe)] in the [Projects] tab, enter [Project name] and [Location], and click the

[OK] button.

In this example, "Sample" is entered for [Project name], and "C:\Program Files\Pro-face\Pro-Server EX\PRO-

SDK\VC" (Windows Vista or later: "C:\Pro-face\Pro-Server EX\PRO-SDK\VC") is entered for [Location].

3 Select [Dialog Based] for "What type of application would you like to create?", and click the [Finish] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-116

4 Click the [OK] button to complete the project.

The read/write functions provided by 'Pro-Server EX' are available as DLL. To use DLL, you must specify a LIB

file.

5 Select [Settings] from [Project] on the Microsoft Visual C++ menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-117

6 Specify a LIB file for [Object/library modules] in the [Link] tab. Then, click the [OK] button.

The LIB file (ProEasy.lib) exists in "PRO-SDK\Vc\Public" in the folder where 'Pro-Server EX' has been installed.

In this example, "..\Public\ProEasy.lib" is specified.

7 To use read/write functions provided by 'Pro-Server EX', you must include a header file (ProEasy.h). After

clicking the [FileView] tab in the [Work Space] window of Microsoft Visual C++, double-click the

"SampleDig.cpp" file.

In this example, the read/write functions are used in the "SampleDig.cpp" file.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-118

8 Add #include "..\Public\ProEasy.h" to the "SampleDig.cpp" file. This completes the function (read/write function)

decleration procedure.

The above 1 to 8 steps apply to both reading and writing applications.

The following procedure varies depending on whether the application is intended for reading or writing, and so is

explained individually.

To create a "Reading" application, refer to steps 9 to 30.

To create a "Writing" application, refer to steps 31 to 47.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-119

Creating "Reading" application
This section describes the procedure for creating an application that reads and displays data (16-bit signed data)

for three points with a click on [Button1].

9 After clicking the [ResourceView] tab in the [Work Space] window of Microsoft Visual C++, double-click

[IDD_SAMPLE_DIALOG].

Select [Static Text] at the center of the dialog box, and delete it.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-120

10 Select [Customize] from [Tools] on the Microsoft Visual C++ menu.

11 Check the [Controls] checkbox in the [Toolbars] tab, and click the [Close] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-121

12 Select [ListBox], and paste it to the dialog box.

13 Right-click the pasted [ListBox], and select [Property]. The [List Box Propertis] dialog box appears. Then,

uncheck the [Sort] checkbox.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-122

14 Select [ClassWizard] from [View] on the Microsoft Visual C++ menu.

15 Select the [Member Variables] tab, and select "IDC_LIST1" for [Control IDs].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-123

16 Click [Add Variable], and enter "m_List" for [Member variable name]. After selecting "Control" for [Category],

click the [OK] button.

17 After confirming that the member variable has been added, click the [OK] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-124

18 Select [Button], and paste it to the dialog box.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-125

19 Select a target symbol name from those registered in 'Pro-Studio EX'. (Select the symbol with first-adress for

reading.)

20 Select [VC++] - [Read Function] from "Programming Assist" on the menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-126

The read function is copied to the clipboard.

21 Double-click [Button1] that has been pasted to [Dialog] in Microsoft Visual C++.

22 Click the [OK] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-127

23 Paste the data on the clipboard (read function) into the OnButton1 member function.

24 Declare the area (Array) to store the read data.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-128

25 Specify the first area (wData) to store the read data.

26 To display the read data for three points (wData(0), wData(1) and wData(2)) in the list box, convert the data into

Cstring-type string data.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-129

27 The list box (m_List) displays the read data (that has been converted into string data) in sequence.

28 Select [Execute Sample.exe] from [Build] on the Microsoft Visual C++ menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-130

29 Click the [Yes] button.

30 Click [Button1]. Then, the list box displays the data for three points from the symbol "_D0040_WORD".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-131

Creating "Writing" application
This section describes the procedure for creating an application that writes the data entered for three points with a

click on [Button1].

Steps 9 to 11 are the same as those for creating "Reading" application.

31 Select [EditBox], and paste it to [Dialog]. Paste [Edit Box] for three items.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-132

32 Select [ClassWizard] from [View] on the Microsoft Visual C++ menu.

33 Select "IDC_EDIT1" for [Control IDs] in the [Member Variables] tab, and click the [Add Variable] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-133

34 Enter "m_Edit1" for [Member Variable], and select "short" for [Variable type]. Then, click the [OK] button.

For remaining two [Edit Box], repeat steps 33 and 34. Specify "m_Edit2" and "m_Edit3" for member variables,

respectively.

35 Click the [OK] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-134

36 Select [Button], and paste it to [Dialog].

37 Select a target symbol name from those registered in 'Pro-Studio EX'. (Select the symbol with first-adress for

writting.)

Using APIs (Examples)

Pro-Server EX Reference Manual 27-135

38 Select [Programming Assist] - [VC++] - [Write Function] on the menu.

The write function is copied to the clipboard.

39 Double-click [Button1] that has been pasted to [Dialog] in Microsoft Visual C++.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-136

40 Click the [OK] button.

41 Paste the data on the clipboard (write function) into the OnButton1 member function.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-137

42 Declare the area (Array) to store the write data. For three or more writing points, specify three or more array

elements.

43 Set the data entered in [Edit Box] (for three points) into the array.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-138

44 Specify the first alignment (wData) where the written data has been set.

45 Select [Execute Sample.exe] from [Build] on the Microsoft Visual C++ menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-139

46 Click the [Yes] button.

47 After entering the values for three points in each [Edit Box], click [Button1]. Then, 'Pro-Server EX' executes the

writing of the data for three points from the symbol "_D0040_WORD".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-140

27.11.3 VB .NET Support Function

1 Start Microsoft Visual Studio .NET 2003 (or later version), and select [New] - [Project] from the [File] menu.

2 After selecting [Visual Basic Projects] in [Project Types:], select [Windows Application] in [Templates:], and

click the [OK] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-141

3 Select [Add Reference] from the [Project] menu.

4 Click the [Browse] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-142

5 Specify the directory for ProEasyDotNet.dll to be installed, and click the [Open] button. (When installed as

standard, the directory is "C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEazyDotNet.dll".)

• Microsoft .NET Framework 1.1 support for ProEasyDotNet
• Windows Vista or later

C:\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEasyDotNet.dll
• Windows 2000 / XP / Server 2003

C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEasyDotNet.dll
• Microsoft .NET Framework 2.0 support for ProEasyDotNet

• Windows Vista or later
C:\Pro-face\Pro-Server EX\PRO-SDK\DotNet20\bin\ProEasyDotNet.dll

• Windows 2000 / XP / Server 2003

C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet20\bin\ProEasyDotNet.dll

Using APIs (Examples)

Pro-Server EX Reference Manual 27-143

6 Click the [OK] button.

"ProEasyDotNet.dll" will be registered.

This completes the VB.NET operating environment setup.

The above 1 to 6 steps apply to both reading and writing applications.

The following procedure varies depending on whether the application is intended for reading or writing, and so is

explained individually.

To create a "Reading" application, refer to steps 7 to 19.

To create a "Writing" application, refer to steps 20 to 32.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-144

Creating "Reading" application
This section describes the application that reads and displays data (signed 16 bits) on three items when you click

[Button1].

7 After selecting [ListBox] in [Toolbox], clip and paste it onto [Form1].

* If [Toolbox] is not displayed, select [Toolbox] from the [View] menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-145

8 After selecting [Button] in [Toolbox], clip and paste it onto [Form1].

9 Select a desired read symbol name from the symbols that have been registered in 'Pro-Studio EX'.

* The above example shows the symbol for the data type of [16Bit (Signed)] and the data quantity of "3".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-146

10 Select [VC++] - [Read Function] from the [Programming Assist] menu.

The read function is copied to the clipboard.

11 Double-click [Button1] in [Form1], and paste the clipboard data (read function) between the Sub statement and

the End Sub statement.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-147

12 Import the ProEasyDotNet library.

Enter "Imports" at the head of the source code, and select [ProEasyDotNet] from the displayed list box.

13 For the read data storing area, declare a variable "wData".

The array type ("Short" in this example) must conform to the data type of the target symbol. Specify the same data

length as the target symbol ("3" in this example).

14 Enter "ProEasy." before "ReadSymbol", and select [ReadDevice16] from the displayed list box.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-148

15 Delete "ReadSymbol" from the character string (read function) that has been pasted from the clipboard.

16 Specify a data storing area "wData" as the third argument. Enter ", " (comma) at the end of the third argument, and

then enter "3" to specify the length of the target symbol as the fourth argument. After that, delete ";" (semicolon)

at the end of the line.

17 Add the read data on three items (wData(0), wData(1), wData(2)) into [ListBox1] in this order.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-149

18 Select [Start] from the [Debug] menu.

19 If you click [Button1], the target symbol data (three items) are displayed in [ListBox].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-150

Creating "Writing" application
This section describes the application that writes data (signed 16 bits) on three items when you click [Button1].

20 After selecting [TextBox] in [Toolbox], clip and paste three text boxes onto [Form1].

* If [Toolbox] is not displayed, select [Toolbox] from the [View] menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-151

21 After selecting [Button] in [Toolbox], clip and paste it onto [Form1].

22 Select a desired write symbol name from the symbols that have been registered in 'Pro-Studio EX'. (Select the first

writing area.)

* The above example shows the symbol for the data type of [16Bit (Signed)] and the data quantity of "3".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-152

23 Select [VC++] - [Write Function] from the [Programming Assist] menu.

The write function is copied to the clipboard.

24 Double-click [Button1] in [Form1], and paste the clipboard data (write function) below the [Button1_Click]

method ("Private Sub Button1_Click..." character string).

Using APIs (Examples)

Pro-Server EX Reference Manual 27-153

25 Import the ProEasyDotNet library.

Enter "Imports" at the head of the source code, and select [ProEasyDotNet] from the displayed list box.

26 For the write data storing area, declare a variable "wData".

The array type ("Short" in this example) must conform to the data type of the target symbol. Specify the same data

length as the target symbol ("3" in this example).

27 Set the data to be entered in [TextBox1] to [TextBox3] in the array.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-154

28 Enter "ProEasy." before "WriteSymbol", and select [WriteDevice16] from the displayed list box.

29 Delete "WriteSymbol" from the character string (write function) that has been pasted from the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-155

30 Specify a data storing area "wData" as the third argument. Enter "," (comma) at the end of the third argument, and

then enter "3" to specify the length of the target symbol as the fourth argument. After that, delete ";" (semicolon)

at the end of the line.

31 Select [Start] from the [Debug] menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-156

32 Immediately after startup, a character string "TextBox*" is displayed in [TextBox].

After entering the write data (three items) in [TextBox], click [Button1]. Then, the data will be written into the

area specified with the symbol.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-157

27.11.4 C# .NET Support Function

1 Start Microsoft Visual Studio .NET 2003 (or later version), and select [New] - [Project] from the [File] menu.

2 After selecting [Visual C# Projects] in [Project Types:], select [Windows Application] in [Templates:], and click

the [OK] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-158

3 Select [Add Reference] from the [Project] menu.

4 Click the [Browse] button.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-159

5 Specify the directory for ProEasyDotNet.dll to be installed, and click the [Open] button. (When installed as

standard, the directory is "C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEazyDotNet.dll".)

• Microsoft .NET Framework 1.1 support for ProEasyDotNet
• Windows Vista or later

C:\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEasyDotNet.dll
• Windows 2000 / XP / Server 2003

C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet\bin\ProEasyDotNet.dll
• Microsoft .NET Framework 2.0 support for ProEasyDotNet

• Windows Vista or later
C:\Pro-face\Pro-Server EX\PRO-SDK\DotNet20\bin\ProEasyDotNet.dll

• Windows 2000 / XP / Server 2003

C:\Program Files\Pro-face\Pro-Server EX\PRO-SDK\DotNet20\bin\ProEasyDotNet.dll

Using APIs (Examples)

Pro-Server EX Reference Manual 27-160

6 Click the [OK] button.

"ProEasyDotNet.dll" will be registered.

This completes the C# .NET operating environment setup.

The above 1 to 6 steps apply to both reading and writing applications.

The following procedure varies depending on whether the application is intended for reading or writing, and so is

explained individually.

To create a "Reading" application, refer to steps 7 to 19.

To create a "Writing" application, refer to steps 20 to 32.

Creating "Reading" application
This section describes the application that reads and displays data (signed 16 bits) on three items when you click

[button1].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-161

7 After selecting [ListBox] in [Toolbox], clip and paste it onto [Form1].

* If [Toolbox] is not displayed, select [Toolbox] from the [View] menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-162

8 After selecting [Button] in [Toolbox], clip and paste it onto [Form1].

9 Select a desired read symbol name from the symbols that have been registered in 'Pro-Studio EX'.

* The above example shows the symbol for the data type of [16Bit (Signed)] and the data quantity of "3".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-163

10 Select [VC++] - [Read Function] from the [Programming Assist] menu.

The read function is copied to the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-164

11 Double-click [button1] in [Form1], and paste the clipboard data (read function) below the [button1_Click] method

("private void button1_Click..." character string).

Using APIs (Examples)

Pro-Server EX Reference Manual 27-165

12 Describe the ProEasyDotNet directive.

Enter "using ProEasyDotNet;" at the bottom of the lines that state "using..." at the head of the source code.

13 For the read data storing area, declare a variable "wData".

The array type ("Short" in this example) must conform to the data type of the target symbol. Specify the same data

length as the target symbol ("3" in this example).

Using APIs (Examples)

Pro-Server EX Reference Manual 27-166

14 Enter "ProEasy." before "ReadSymbol", and select [ReadDevice16] from the displayed list box.

15 Delete "ReadSymbol" from the character string (read function) that has been pasted from the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-167

16 Specify a data storing area "wData" with the reference modifier (out), as the third argument. Enter "," (comma) at

the end of the third argument, and then enter "3" to specify the length of the target symbol as the fourth argument.

17 Add the read data on three items (wData[0], wData[1], wData[2]) into [listBox1] in this order.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-168

18 Select [Start] from the [Debug] menu.

19 If you click [button1], the target symbol data (three items) are displayed in [ListBox].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-169

Creating "Writing" application
This section describes the application that writes data (signed 16 bits) on three items when you click [button1].

20 After selecting [TextBox] in [Toolbox], clip and paste three text boxes onto [Form1].

* If [Toolbox] is not displayed, select [Toolbox] from the [View] menu.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-170

21 After selecting [Button] in [Toolbox], clip and paste it onto [Form1].

22 Select a desired write symbol name from the symbols that have been registered in 'Pro-Studio EX'. (Select the first

writing area.)

* The above example shows the symbol for the data type of [16Bit (Signed)] and the data quantity of "3".

Using APIs (Examples)

Pro-Server EX Reference Manual 27-171

23 Select [VC++] - [Write Function] from the [Programming Assist] menu.

The write function is copied to the clipboard.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-172

24 Double-click [button1] in [Form1], and paste the clipboard data (write function) below the [button1_Click]

method ("private void button1_Click..." character string).

Using APIs (Examples)

Pro-Server EX Reference Manual 27-173

25 Describe the ProEasyDotNet directive.

Enter "using ProEasyDotNet;" at the bottom of the lines that state "using..." at the head of the source code.

26 For the write data storing area, declare a variable "wData".

The array type ("Short" in this example) must conform to the data type of the target symbol. Specify the same data

length as the target symbol ("3" in this example).

Using APIs (Examples)

Pro-Server EX Reference Manual 27-174

27 Set the data to be entered in [textBox1] to [textBox3] in the array.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-175

28 Enter "ProEasy." before "WriteSymbol", and select [WriteDevice16] from the displayed list box.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-176

29 Delete "WriteSymbol" from the character string (write function) that has been pasted from the clipboard.

30 Specify a data storing area "wData" as the third argument. Enter "," (comma) at the end of the third argument, and

then enter "3" to specify the length of the target symbol as the fourth argument.

Using APIs (Examples)

Pro-Server EX Reference Manual 27-177

31 Select [Start] from the [Debug] menu.

32 Immediately after startup, a character string "textBox*" is displayed in [TextBox].

Using APIs (Examples)

Pro-Server EX Reference Manual 27-178

After entering the write data (three items) in [TextBox], click [button1]. Then, the data will be written into the

area specified with the symbol.

	27 Designing Your Own Program
	27.1 Using API Functions
	27.1.1 Single-/Multi-Handle Functions
	27.1.2 Cache/Direct Type
	27.1.3 Cache Buffer Control APIs
	27.1.4 Group Access
	27.1.5 Queuing Access
	27.1.6 Bit Data Access
	27.1.7 System APIs
	27.1.8 SRAM Data Access APIs
	27.1.9 CF Card and SD Card APIs

	27.2 Device Access APIs
	27.3 Cache Buffer Control APIs
	27.4 Queuing Access Control APIs
	27.5 System APIs
	27.6 SRAM Data Access APIs
	27.7 CF Card / SD Card APIs
	27.8 Binary Date and Time / Text Display Conversion
	27.9 Other APIs
	27.10 Precautions for Using APIs
	27.11 Using APIs (Examples)
	27.11.1 VB Support Function
	27.11.2 VC Support Function
	27.11.3 VB .NET Support Function
	27.11.4 C# .NET Support Function

