
Developer Manual

PS Series Type G
Application Development Kit

(ADK)

1

Preface

Thank you for purchasing Pro-face PS Series Type G Application Development Kit (hereafter referred to as
“ADK”). This manual is the Developer Manual for the ADK, which contains the libraries and definition files
necessary for developing applications that will run on Pro-face PS Series Type G Programmable Operator
Interface (hereafter referred to as “PS-G unit”). Please read this manual thoroughly before using the ADK.

© 2001, Digital Electronics Corporation. All rights reserved.

For details concerning trademarks, please refer to “About Trademarks”.

 Important

 (1) The copyrights to all programs and manuals included in the “PS Series Type G Application Development Kit
 (ADK)” (hereafter referred to as “this product”) are reserved by the Digital Electronics Corporation. Digital
 grants the use of this product to its users as described in the “END-USER LICENSE AGREEMENT”
 documentation. Any actions violating the above-mentioned agreement is prohibited by both Japanese and foreign
 regulations.
 (2) The contents of this manual have been thoroughly inspected. However, if you should find any errors or
 omissions in this manual, please inform your local representative of your findings.
 (3) Regardless of article (2), the Digital Electronics Corporation shall not be held liable by the user for any damages,
 losses, or third party claims arising from the uses of this product.
 (4) Differences may occur between the descriptions found in this manual and the actual functioning of this product.
 Therefore, the latest information on this product is provided in data files (i.e. Readme.txt files, etc.) and in
 separate documents. Please consult these sources as well as this manual prior to using the product.
 (5) The specifications set out in this manual are for overseas products only. As a result, some differences may exist
 between the specifications given here and for those of the identical Japanese product.
 (6) Even though the information contained in and displayed by this product may be related to intangible or
 intellectual properties of the Digital Electronics Corporation or third parties, the Digital Electronics Corporation
 shall not warrant or grant the use of said properties to any users and/or other third parties.

2

Documentation Conventions

In this manual the following warning symbols are used to indicate important points concerning safe and
proper use of the ADK. Prior to operating the ADK, be sure to read these points carefully.

Warning Symbols

This manual’s warning symbols indicate the following levels of danger.

The following mark is used in this manual in addition to the safety and warning symbols.

WARNING

CAUTION

Failure to fully comply with points indicated by this
symbol may result in death or serious injury.

Failure to fully comply with points indicated by this
symbol may result in injury or equipment damage.

Indicates actions or procedures that should NOT be
performed.

Indicates actions or procedures that MUST be performed
to ensure proper operation.

Refers to related information or an additional explanation.

3

Term used in this manual Official Trademarks

Windows 95 Microsoft® Windows 95® operating system

Windows 98 Microsoft® Windows® 98 operating system

Windows NT Microsoft® Windows NT® operating system

Windows 2000 Microsoft® Windows® 2000 operating system

Windows CE Microsoft® Windows® CE operating system

MS-DOS Microsoft® MS-DOS® operating system

Pentium Intel® Pentium® processors

Acrobat Reader 4.0 Adobe® Acrobat® Reader 4.0

eMbedded Visual Tools Microsoft® eMbeddedTM Visual Tools 3.0

eMbedded Visual C++ Microsoft® eMbeddedTM Visual C++® 3.0

eMbedded Visual Basic Microsoft® eMbeddedTM Visual Basic® 3.0

ActiveSync 3.1 Microsoft® ActiveSync® 3.1

Microsoft Custom SDK Microsoft® Custom Software Development Kit for Windows® CE,
Version 3.0

Windows CE Platform SDK
(HPC Pro)

Microsoft® Software Development Kit for Windows® CE,
Handheld P/C Professional Edition Version 3.01

About Trademarks

The company names and product names described in this manual are referred to in this manual by their
trademarks (including registered trademarks) or service marks. These are abbreviated as follows:

The abbreviated trademarks in this manual correspond to the following official trademarks:

Trademark Holder

Microsoft, MS, Windows, Windows 95, Windows 98,
Windows NT, Windows 2000, Windows CE,
Windows Explorer, eMbedded Visual C++,
eMbedded Visual Basic

Microsoft Corporation

Intel, Pentium Intel Corporation

Pro-face Digital Electronics Corporation

IBM, VGA, PC/AT IBM

Adobe, Acrobat Adobe Systems Incorporated

4

PS Series Type G Model Numbers

The PS Series Type G units consist of the following models.

Please note that the term PS-G in this manual refers only to the PS600G-T41-E124V and the PS400G-T41-
E124V.
The Japanese version of the PS Series Type G Application Development Kit should be used to develop
applications for PS-G units with preinstalled Japanese Windows CE 3.0. To develop applications for
PS-G units with preinstalled English Windows CE 3.0, use the English version of the PS Series Type G
Application Development Kit.

Series Model Description International standards

PS600G-T11-J1
Preinstalled with Windows CE
3.0 (Japanese).
Input voltage AC100V

Not supported

PS600G-T41-J124V
Preinstalled with Windows CE
3.0 (Japanese).
Input voltage DC24V

CE Marking, UL/c-UL
(CSA) compliant.

PS600G-T41-E124V
Preinstalled with Windows CE
3.0 (English).
Input voltage DC24V

CE Marking, UL/c-UL
(CSA) compliant.

PS400G-T41-J124V
Preinstalled with Windows CE
3.0 (Japanese).
Input voltage DC24V

CE Marking, UL/c-UL
(CSA) compliant.

PS400G-T41-E124V
Preinstalled with Windows CE
3.0 (English).
Input voltage DC24V

CE Marking, UL/c-UL
(CSA) compliant.

PS-600G

PS-400G

5

CD-ROM Contents

The CD-ROM provided with this ADK package contains the following:

Item

PS Series Type G
Application Development Kit
(ADK) Developer Manual
(This manual)

Acrobat Reader 4.0

Microsoft Custom
SDK

Standard [Windows
CE] library files

PS Series Type G
Platform SDK
(Platform Developer
Components for the
Microsoft Custom
SDK)

Library and header
files that allow
programs such as
RAS, etc. to access
specific PS-G unit
hardware.

ActiveSync 3.1

PS Series Type G
Application Development Kit
(ADK)

Enables communication between the PS-G
unit and the personal computer used for
developing applications.

Description

PDF manual for the PS Series Type G
Application Development Kit (ADK)

Software for viewing PDF files
(Self-extracting file)

6

Usage Precautions

WARNINGS

During Program Development

Do not design emergency stop switches that require activation via the PS-G unit’s touch panel. For
industrial machinery or equipment, installation of a physically activated mechanical-type emergency
switch is likely to be required by law. Also, for devices or equipment other than the above, be sure to
install a safety switch that complies with all relevant laws and regulations.

CAUTIONS

Handling of CD-ROM disk

Be sure to remove the CD-ROM disk before turning your personal computer’s power OFF.

Do not attempt to remove the CD-ROM disc while the drive lamp is lit.

Do not touch the CD-ROM data surface.

Keep this disc away from excessively high or low temperatures, and environments with prolonged high
humidity and dust.

Do not turn OFF your personal computer’s power while a program is running.

7

Table of Contents

Preface.. 1

Documentation Conventions ... 2

About Trademarks ... 3

PS Series Type G Model Numbers ... 4

CD-ROM Contents .. 5

Usage Precautions ... 6

Chapter 1 Development Environment
1 Overview .. 1-2

2 Hardware Environment .. 1-3

3 Software Environment ... 1-5
3.1 Development Software.. 1-5

3.2 ADK Files ... 1-6

4 Installing Application Development Tools ... 1-8

5 Remote Connection Procedure ... 1-13
5.1 Personal Computer Settings ... 1-13

5.2 PS-G Unit Settings ... 1-16

5.3 Connection .. 1-17

Chapter 2 Application Development
1 Development using eMbedded Visual C++ .. 2-2

1.1 Creating a Project ... 2-2

1.2 Building and Downloading a Program ... 2-5

1.3 Running a Program .. 2-6

2 Development using eMbedded Visual Basic .. 2-7
2.1 Creating a Project ... 2-7

2.2 Downloading and Running a Program .. 2-9

3 Debugging Programs Using the Emulator ... 2-12

4 Auto Start ... 2-14

Chapter 3 Library Interface Reference
1 Backlight Driver .. 3-3

1.1 Backlight Driver APIs .. 3-3

1.2 Function Specifications ... 3-4

2 SRAM Driver .. 3-9
2.1 SRAM Driver APIs .. 3-9

2.2 Function Specifications ... 3-9

8

3 GMU-BUS Driver ... 3-14
3.1 GMU-BUS Driver APIs ... 3-14

3.2 Function Specifications ... 3-14

4 RAS Driver ... 3-20
4.1 RAS Driver APIs ... 3-20

4.2 Details of Function Specifications ... 3-22

4.3 Register Details ... 3-42

5 Touch Panel Driver ... 3-46
5.1 Touch Panel Driver APIs ... 3-46

5.2 Function Specifications ... 3-46

Index

1

1 Overview
2 Hardware Environment
3 Software Environment
4 Installing Application Development Tools
5 Remote Connection Procedure

Development
Environment

1-2

PS Series Type G Application Development Kit (ADK) Developer Manual

1 Overview
The Application Development Kit (ADK) containing libraries and definition files used for
developing PS-G unit applications.
The new PS-G unit is a high-performance programmable operator interface that uses the Hitachi
SH4 RISC CPU (200MHz) and is preinstalled with Windows CE 3.0.
To develop applications that will run on the PS-G unit, you will need both the eMbedded Visual
Tools and the ADK-software.
eMbedded Visual Tools offer functionality similar to a regular Win32 application development
environment (such as Visual Studio), and allow you to easily create applications for the PS-G unit.
Since you can utilize your Win32 application programming knowledge and use familiar
debugging tools, you can quickly create Windows CE applications for the PS-G unit. Also, the use
of the Windows CE API, a subset of the Win32 API, helps to further improve development
efficiency.

• Since the eMbedded Visual Tools package is not included in the ADK
package, you will need to purchase it separately.

• Certain Win32 APIs cannot be used with Windows CE. For details,
please refer to the MSDN and check whether the APIs you intend to use
are supported by Windows CE.

1-3

1 Development Environment

2 Hardware Environment
The following describes the hardware configuration required for developing and running PS-G
unit applications.
Connect the PS-G unit to a personal computer via the data transfer cable provided with ADK.
This allows an application developed on the personal computer to be easily download to the PS-
G. If the personal computer you are using has a CF Card adaptor, you can run an application on
the PS-G unit after copying it to the CF Card and then loading the card data into the PS-G unit.
A CF Card is also required to save applications downloaded to the PS-G unit or data entered via
the Control Panel of the PS-G unit.

• Use only Digital Electronics Corporation CF Cards. Other vendor CF
Cards may fail to meet PS-G specifications.

• Be sure to back up your CF Card data regularly.

CF Card
GP077-CF20 16MB

GP077-CF30 32MB

PS-G

Personal computer
 (application development)

Data Transfer Cable
(provided with ADK)
PSG-CB01

1-4

PS Series Type G Application Development Kit (ADK) Developer Manual

The following describes the personal computer hardware required to develop applications. Refer
to each package’s hardware environment specifications for details.

<Required Personal Computer Hardware>

CAUTION
Windows 98 is not recommended if you want to both develop and debug
applications, as problems with emulation functions or remote tools may occur
during debugging. When developing applications that require performance of both
the build and the debug process, be sure to use a personal computer running
Windows NT 4.0 or Windows 2000.

Operating System

Computer

Memory

Hard-disk Space

CD-ROM Drive A CD-ROM drive is required.

Windows NT Workstation 4.0 with Service Pack 5 or
later, Windows 2000 Professional, or Windows 98
Second Edition.

Windows compatible PC with Pentium processor
(Pentium 150MHz or faster processor is
recommended)

32MB for Windows NT 4.0 or Windows 2000 (48MB
recommended)
24MB of RAM for Windows 98 (48MB recommended)

Installing eMbedded Visual C++ and Windows CE
Platform SDK (HPC Pro), or eMbedded Visual Basic
and Windows CE Platform SDK (HPC Pro) requires
360MB or more.
Installing the ADK software requires free space of
100MB or more.

1-5

1 Development Environment

3 Software Environment
To develop applications that will run on the PS-G unit, you need both the eMbedded Visual Tools
and the ADK.
The eMbedded Visual Tools contain both eMbedded Visual C++ and eMbedded Visual Basic.
ADK supports both of these visual programming tools.

3.1 Development Software

The following software should be installed when developing applications.

Item

Windows CE
Platform SDK
(HPC Pro)

This program must
be installed to run
Windows CE
applications under
emulation on your
computer.

Microsoft Custom
SDK

Standard [Windows
CE] library files

PS Series Type G
Platform SDK
(Platform Developer
Components for the
Microsoft Custom
SDK)

Library and header
files that allow
programs such as
RAS, etc. to access
specific PS-G unit
hardware.

ActiveSync 3.1

TCP/IP protocol

Enables communication between the PS-G
unit and the personal computer used for
developing applications.(This program is
included in the ADK package.)
TCP/IP protocol must be used to download
the applications to the emulator via Ethernet
for debugging. (Be sure to set the
appropriate network parameters for your
development environment.)

Description

eMbedded Visual Tools

Install eMbedded Visual C++ or eMbedded
Visual Basic.

PS Series Type G
Application Development Kit
(ADK)

1-6

PS Series Type G Application Development Kit (ADK) Developer Manual

The eMbedded Visual Tools package contains the following remote tools. These tools allow the
personal computer used for development to acquire necessary information from the PS-G unit
(connected via Microsoft ActiveSync3.1), debug applications and check program operation.

• Remote Spy++ (Spy)
Determines what kind of messages the target device receives or uses to check window
handles, classes, and other items.

• Remote Registry Editor (Registry Editor)
Used for editing the target device registry.

• Remote ZoomIn (Zoom)
Enables you to capture target device screen images and view them on the personal
computer used for developing applications.

• Remote File Viewer (File Viewer)
Enables you to browse files on the target device.

• Remote Heap Walker (Heap Walker)
Checks the heap ID and the current heap.

• Remote Process Viewer (Process Viewer)
Enables you to check the processes, threads and modules that are currently being executed
on the target device, and check for available memory areas.

3.2 ADK Files

Each ADK contains the following two software development kits: Microsoft Custom SDK and PS
Series Type G Platform SDK. After an ADK is installed, individual SDK files are automatically
extracted to the following folders.

Microsoft Custom SDK

Standard library files for Windows CE
\Windows CE Tools \Wce300\Bin

\Psgwce30 \Atl
\Help
\Include
\Lib
\Mfc
\Target
\Template
\Vbsdk

1-7

1 Development Environment

PS Series Type G Platform SDK

\Windows CE Tools \Wce300\Psgwce30\Include\bldrvapi.h
\sramdrvapi.h
\gmudrvapi.h
\rasdrvapi.h
\tchdrvapi.h

\Windows CE Tools \Wce300\Psgwce30\Lib\Sh4 \bldrvif.lib
\sramdrvif.lib
\gmudrvif.lib
\rasdrvif.lib
\touchdrvif.lib
\bldrvif.exp
\sramdrvif.exp
\gmudrvif.exp
\rasdrvif.exp
\touchdrvif.exp

\Windows CE Tools \Wce300\Psgwce30\Vbsdk\Sh4\bldrvif.lib
\sramdrvif.lib
\gmudrvif.lib
\rasdrvif.lib
\touchdrvif.lib
\bldrvif.exp
\sramdrvif.exp
\gmudrvif.exp
\rasdrvif.exp
\touchdrvif.exp
\bldrvdef.bas
\sramdrvdef.bas
\gmudrvdef.bas
\rasdrvdef.bas
\touchdrvdef.bas

1-8

PS Series Type G Application Development Kit (ADK) Developer Manual

4 Installing Application Development Tools
Before installing an ADK, be sure to check that the personal computer to be used for application
development meets the specified requirements by referring to the table <Required Personal
Computer Hardware> in "Chapter 1 2. Hardware Environment."

CAUTION
Windows 98 is not recommended if you want to both develop and debug
applications, as problems with emulation functions or remote tools may occur
during debugging. When developing applications that require performance of both
the build and the debug process, be sure to use a personal computer running
Windows NT 4.0 or Windows 2000.

To install the application development tools, follow the procedure below.
Be sure to follow the procedures given here, in sequence. If you do not, the tools may not operate
correctly.
(1) Install the eMbedded Visual Tools.
(2) Install the ADK for eMbedded Visual C++ or eMbedded Visual.
(3) Install ActiveSync 3.1.

Installing the eMbedded Visual Tools

(1) Install the eMbedded Visual Tools software.
eMbedded Visual Tools contains both eMbedded Visual C++ and eMbedded Visual Basic.
Install either or both, depending on your needs.

Installing the ADK

(1) Insert the ADK CD-ROM into your personal computer's CD-ROM drive and install either the

ADK for eMbedded Visual C++ or eMbedded Visual Basic.
• To install ADK for Visual C++

Install ADK for Visual C++ by double-clicking on the [psgsdk.exe] file located in the CD-
ROM’s [\us\psg-adk\vc] folder. After the installation screen appears, follow each screen’s
instructions.

• To install ADK for Visual Basic
Install ADK for Visual Basic by double-clicking on the [psgsdk.exe] file located in the CD-
ROM’s [\us\psg-adk\vb] folder. After the installation screen appears, follow each screen’s
instructions.

1-9

1 Development Environment

Installing ActiveSync 3.1 and connecting with the PS-G unit

(1) Install ActiveSync 3.1 by double-clicking on the [msasync.exe] file located in the ADK CD-
ROM's [\us\async] folder, and then follow each screen's instsructions.
As the installation progresses, the computer enters the PS-G connection standby mode.
However, at this stage, do not establish the connection. This is done by not clicking the

 button until step (11).

(2) Turn ON the power to the PS-G unit, and connect the data transfer cable (provided with the
ADK) from the COM port on the personal computer to the serial I/F (COM1) on the PS-G
unit.

(3) To open the PS-G unit's Control Panel, click the [Start] button and then point to [Settings].
From the menu that appears, click [Control Panel].

(4) Double click to open the [Communications Properties] screen.

1-10

PS Series Type G Application Development Kit (ADK) Developer Manual

(5) Enter a name in the [Device name] field so that the PS-G unit will be recognized by the
personal computer.

(6) Click the [PC Connection] tab, and then the button.

(7) Select the desired baud rate setting.

(8) Click the button to register the [Communications Properties] settings.

(9) In the Control Panel, click on the icon to save the remote connection settings to the

CF Card. Then, reboot the PS-G unit.

(10) After the PS-G unit is rebooted, open the [\Windows] folder, located in My Computer.

1-11

1 Development Environment

Personal computer PS-G unit

(11) Click the button on the dialog box that appeared in step (1), and immediately

double-click the icon (connection establishment program).

The connection with the PS-G unit will not be established if the timing of the double-

clicking of is not correct . If the connection fails, the following screen will appear on

both the PC and the PS-G unit. In this case, retry step (11).

Personal computer PS-G unit

1-12

PS Series Type G Application Development Kit (ADK) Developer Manual

(12) When the connection is successfully established, the following screen will appear on the PC.
Select [No] for [Would you like to set up a partnership?] and click the button.

(13) When the connection is completed, the [Microsoft ActiveSync] screen appears on the PC.

Also, an icon signifying a successful connection appears in the PS-G unit’s the task bar.

Once the connection is established, ActiveSync 3.1 stays resident in the
computer memory and the connection settings are stored, allowing the
PS-G unit to be connected with the personal computer from next time by

simply double-clicking the PS-G unit’s icon.

1-13

1 Development Environment

5 Remote Connection Procedure
To transfer a program from the personal computer used for developing applications to the PS-G
unit and then debug the program while it is running on the PS-G unit, use ActiveSync 3.1 to
establish the connection between the personal computer and the PS-G unit.

Transfering a program via an Ethernet network greatly shortens the
transfer time. To use an Ethernet network, you should set the parameters
appropriate for the development environment.

Turn ON the power to the PS-G unit, and connect the data transfer cable (provided with the ADK)
from the COM port on the personal computer to the serial I/F (COM1) on the PS-G unit.

5.1 Personal Computer Settings

ActiveSync 3.1 - Connection Settings

Launch ActiveSync 3.1 and select [Connection Settings] from the [File] menu. In the following
screen, designate the data transfer cable port.

1-14

PS Series Type G Application Development Kit (ADK) Developer Manual

eMbedded Visual Tools - Platform Manager Configuration

From the [Platform Manager Configuration] screen, register a device name in your PC for the
PS-G unit. This enables you to designate the PS-G unit as the download destination. The device
properties should also be set according to the communication settings.

(1) Call up the [Platform Manager Configuration] screen following either of the procedures
below. When you use eMbedded Visual C++, select [Platform Manager Configuration] from
the [Tools] menu. When you use eMbedded Visual Basic, select [Project 1 - Properties] from
the [Project] menu and then click the button.

(2) Select [PSG] and click the button to add its name as a selectable device.

The device name you designate should agree with the one set in the PS-
G unit. Be sure to designate the same device name as the one you set in
the PS-G unit’s [Communications Properties] screen. For details, refer to
"Chapter 1 5.2 PS-G Unit Settings"

(The unit selected here is the PS-G device name.)

1-15

1 Development Environment

(3) Click the button to display the [Device Properties] dialog box. From [Available
Transport Components], select [Microsoft ActiveSync]. If you intend to use Ethernet, select
[TCP/IP Transport for Windows CE].

Transfering a program via an Ethernet network greatly shortens the
transfer time. To use an Ethernet network, you should set the parameters
appropriate for the development environment.

(4) Click the button and the following screen will appear. From [Available Server
Components], select "Microsoft ActiveSync".

(5) Click the button to register the settings and complete the Platform Manager setup.

1-16

PS Series Type G Application Development Kit (ADK) Developer Manual

5.2 PS-G Unit Settings

Control Panel - Communications Settings

(1) To open the PS-G unit's Control Panel, click the [Start] button and then point to [Settings].
From the menu that appears, click [Control Panel].

(2) Double Click to open the [Communications Properties] screen.

(3) Enter a name in the [Device name] field so that the PS-G unit will be recognized by the
personal computer it is connected to.

The device name you enter here should agree with the one set on the
personal computer. Be sure to enter the same device name as the one
you set in the [Platform Manager Configuration] screen on the personal
computer. For details, refer to "Chapter 1 5.1 Personal Computer
Settings"

1-17

1 Development Environment

(4) Click the [PC Connection] tab, and then the button.

(5) Select the desired baud rate setting.

(6) Click the button to register and complete the [Communications Properties] settings.

(7) In the Control Panel, click on the icon to save the remote connection settings to the

CF Card. Then, reboot the PS-G unit.

5.3 Connection

If you have already connected a personal computer to the PS-G unit prior installing ActiveSync
3.1, the connection settings for the personal computer and the PS-G unit can be established by

simply double-clicking and following the procedures from step 12 in "Chapter 1 4.

Installing Application Development Tools." If the connection settings have not yet been
established, launch ActiveSync 3.1 and then select [Connection] from the [File] menu. The
personal computer will go into PS-G connection standby mode. You can then establish the
connection settings by following the procedures in "Chapter 1 4. Installing the Application
Development Tools."

1-18

PS Series Type G Application Development Kit (ADK) Developer Manual

2

1 Development using eMbedded Visual C++
2 Development using eMbedded Visual Basic
3 Debugging Programs Using the Emulator
4 Auto Start

Application
Development

2-2

PS Series Type G Application Development Kit (ADK) Developer Manual

1 Development using eMbedded Visual C++
The following explains the procedure for using eMbedded Visual C++ to create a simple
application to display an on-screen window.

1.1 Creating a Project

 (1) Start eMbedded Visual C++ and select [New] from the [File] menu. In the [Projects] tab,
select the type of program you want to create and input a project name. Select "Win32 [WCE
SH4]" for "CPUs". If you intend to debug the program by running it using the emulator, also
select "Win32 [WCE x86em]".
Click the button to proceed to the next step.

(2) Select the necessary items and click the button.
To create a program using a dialog-based interface, select the [Dialog based] option.

2-3

2 Application Development

(3) Select the necessary items and click the button to proceed to the next step.

(4) Again, select the necessary items and click the button to proceed to the next step.

(5) Click the button, and the following page's [New Project Information] screen will
appear.

2-4

PS Series Type G Application Development Kit (ADK) Developer Manual

(6) Click the button and your new project creation is completed.

2-5

2 Application Development

1.2 Building and Downloading a Program

Here, as an example we will create a program to display the text "Hello PS Series Type G" in the
center of a window.

Add the following description to the OnDraw view class.
pDC->ExtTextOut (350, 300, NULL, NULL, TEXT (“Hello PS Series Type G”), NULL);

When you Build the program, it is automatically downloaded to the designated device. Before
executing the build process, from the [WCE Configuration] tool bar, designate the SDK and other
environment to be used in this process via the options displayed in the "Select Active WCE
Configuration", "Select Active Configuration" and "Select Default Device" pop-up menus.
Depending on the program’s intended use, the setting of the [WCE Configuration] tool bar will
differ. The following three types of program build methods are explained below.

Programs debugged using the emulator
Programs debugged using the PS-G unit
Programs released for the PS-G unit

Program debugged using the emulator

To debug a program by running it using the emulator, the Windows CE Platform SDK (HPC Pro)
is necessary. For details, refer to "Chapter 1 3.1 Development Software."

(1) Set the tool bar as follows and then execute the build.

(2) When the build completes successfully, the program is automatically downloaded to the
emulator. If the emulator is not already running, it will be launched and then it will load the
program automatically.

(3) After downloading is completed, the program is saved in the [\My Handheld PC] folder. Run
the program by double-clicking on the program file's icon. To debug this program, start the
debugger. For details, refer to "Chapter 2 3 Debugging Programs Using the Emulator."

2-6

PS Series Type G Application Development Kit (ADK) Developer Manual

Program debugged using the PS-G unit

(1) Connect the personal computer to be used for development and the PS-G unit via
ActiveSync3.1. For details, refer to "Chapter 1 5 Remote Connection Procedure."

(2) Set the [WCE Configuration] tool bar as follows, and execute the build.

(3) When the build completes successfully, program downloading to the PS-G unit starts
automatically.

(4) After downloading is completed, the program is saved in the PS-G unit's [\My Computer]
folder. Run the program by double-clicking on the program file's icon. To debug this
program, start the PC's debugger.

Programs released for the PS-G unit

(1) Connect the personal computer to be used for development and the PS-G unit via
ActiveSync3.1. For details, refer to "Chapter 1 5 Remote Connection Procedure."

(2) Set the [WCE Configuration] tool bar as follows, and execute the build.

(3) When the build completes successfully, program downloading to the PS-G unit starts
automatically.

(4) After downloading is completed, the program is saved in the PS-G unit's [\My Computer]
folder. Run the program by double-clicking on the program file's icon.

1.3 Running a Program

The program is downloaded to the specified target device. Run the downloaded program by
double-clicking on the program file's icon. To debug this program, start the PC's debugger.
It is also possible to run a program that has been copied to a CF Card. To run a program from a
CF Card, a backup copy of the PS-G's environment settings for running applications should also

be saved on the CF-Card. Insert the CF Card into the PS-G unit and double-click in the

Control Panel. Then, double-click the program file's icon located in the [\My Computer\Storage
Card1] folder to run the program.

2-7

2 Application Development

2 Development using eMbedded Visual Basic
The following explains the procedure for using eMbedded Visual Basic to create a simple
application to display an on-screen window.

2.1 Creating a Project

(1) After starting Visual Basic, the following [New Project] dialog box appears.

You can also select [New Project] from the [File] menu to display the [New Project] dialog
box.

(2) Select [Windows CE PSGWCE30 Project] to create a PS-G program. If you want to create a
program that will run using the emulator, select [Windows CE HPC PRO Project].

To run a program (debugged using the emulator) on the PS-G, be sure to
add the forms and modules that were created for the Windows CE HPC
Pro project to the Windows CE PSGWCE30 project.

2-8

PS Series Type G Application Development Kit (ADK) Developer Manual

(3) After the project type is selected, the following screen will appear.

(4) (4) Select [Project 1 - Properties] from the [Project] menu, and the [Project Properties] dialog
box will appear.

(5) Change the name of the project, if necessary.

(Here, the project type has been set to
"Windows CE PSGWCE30".)

2-9

2 Application Development

2.2 Downloading and Running a Program

Here, we will create a program to display the text "Hello PS Series Type G" in the center of a
window.

(1) Select a label from the toolbox, and paste it on the form. Input “Hello PS Series Type G” into
the “Caption” property.

2-10

PS Series Type G Application Development Kit (ADK) Developer Manual

(2) Select [Project 1 - Properties] from [Project]. In the [Project Properties] screen that appears,
designate a target device from the [Run on Target] pull-down menu.

If you intend to debug a program (Windows CE HPC Pro project) by running it using the
emulator, select [Handheld PC Pro Emulation].

If you intend to debug a program (Windows CE PSGWCE30 project) by running it on the
PS-G unit, select the device name for the PS-G that was registered using the Platform
Manager. For details, refer to "Chapter 1 4.1 Settings on the Personal Computer."

(3) When you designate the PS-G unit as the data download target device, connect your PC to
the PS-G unit using the data transfer cable.

(4) Selecting [Start Debug] or [Execute] from the [Run] menu initiates downloading of the
program to the designated target device. After downloading of the program completes, the
debugging will start.
If a program (Windows CE HPC Pro project) is to be debugged using the emulator, the
program is downloaded to the [\My Handheld PC] folder.
If a program (Windows CE PSGWCE30 project) is to be run on the PS-G unit, the program
is downloaded to the [My Computer] folder of the PS-G unit.

2-11

2 Application Development

 (5) After program download is completesd, you can run the program by simply double-clicking
the program file's icon. To debug the program, execute the PC's debugger. For details, refer
to "Chapter 2 3. Debugging Programs Using the Emulator."
It is also possible to run a program that has been copied to a CF Card on the PS-G unit. To
run a program from a CF Card, a backup copy of the PS-G's environment settings for
running applications should also be saved on the CF-Card. Insert the CF Card into the PS-G

unit and double-click in the Control Panel. Then, double-click the program file's icon

located in the [\My Computer\Storage Card1] folder to run the program.

2-12

PS Series Type G Application Development Kit (ADK) Developer Manual

3 Debugging Programs Using the Emulator
If you intend to debug a program without using the PS-G unit’s special hardware interfaces (such
as RAS or the touch panel), you can effectively debug the program using the emulator included in
the Windows CE Platform SDK (HPC Pro) in your PC. Please note, however, that the Windows
CE Platform SDK (HPC Pro) only runs under Windows NT or Windows 2000.
• Start the emulator and the following screen will appear.

• After the program is loaded to the emulator, the executable file is saved in the [\My Handheld
PC] folder.

2-13

2 Application Development

• Debugging can be started by simply clicking the saved exec file.
You can also debug the program by running it to a specified break point, set earlier via the
eMbedded Visual Tools debug feature.

• To close the emulator, click [Suspend] in the [Start] menu.

2-14

PS Series Type G Application Development Kit (ADK) Developer Manual

4 Auto Start
An application can be automatically started when the PS-G unit is turned ON. The following
explanation describes this procedure.

To automatically start an application in object store memory

(1) Create a shortcut for the application and place it in the PS-G’s [\Windows\Startup] folder, or
place a copy of the application there.

(2) Insert a CF Card into the PS-G, and click the icon in the Control Panel.

(3) Reboot the PS-G unit with the CF Card inserted.

(4) Once Windows CE starts, the PS-G unit will read the environment data from the CF Card and
launch the application registered in the [\Windows\Startup] folder.

To automatically start a CF Card application

(1) Create a shortcut in the [\Windows\Startup] folder pointing to [AutoRun.exe] in the PS-G
unit’s [\Windows] folder.

(2) Open the Properties of the shortcut created in step (1), open the [Shortcut] tab and set the
application to run automatically by changing the link destination in the “Target” field as
follows.

Target: “\Windows\AutoRun.exe” “Storage Card1\Application name”

If "/F" is added to the link destination setting, e.g.,
"Windows\AutoRun.exe" /F "Storage Card1\application name", an
application can be launched without showing the task bar at the bottom
of the screen display. Use this feature to disable the Explorer Shell of
Windows CE in the user application.

(3) Click the button.

(4) Insert a CF Card into the PS-G, and click the icon in the Control Panel.

(5) Reboot the PS-G with the CF Card inserted.

(6) Once Windows CE starts, the PS-G unit will read the environment data from the CF Card and
launch the application registered in the [\Windows\Startup] folder.

]]

]]]

3 Library Interface
Reference

1 Backlight Driver
2 SRAM Driver
3 GMU-BUS Driver
4 RAS Driver
5 Touch Panel Driver

3-2

PS Series Type G Application Development Kit (ADK) Developer Manual

To use the PS-G unit’s special hardware interfaces in your applications, the required header file(s)
should be included in the application’s source file so that the necessary interface library files can
be linked to the object file.
• Backlight driver
• SRAM driver
• GMU-BUS driver
• RAS driver
• Touch panel driver

Detailed interface specifications for eMbedded Visual C++ are given in the
following pages. When developing applications using eMbedded Visual
Basic, although the application APIs are common to eMbedded Visual C++
APIs, the arguments will differ. For more information, refer to the available
eMbedded Visual Basic header files.

To use an individual API contained in the ADK, it is necessary to set the drivers to Open before
using the API and to change the setting back to Close after the API is used. Use the following
example as a reference when creating a program.

Example) // Example of the settings for drivers
// Not only the SRAM but also other drivers need the Open/Close settings.
// Declaration for variables
BOOL Ret;
DWORD SramOffset;
BYTE SramData;
// Application reinstate processing
// Before using the drivers, each driver should be set to Open.
// Call up the corresponding "xxx DriverOpen()" setting for each driver.
Ret = SramDriverOpen(); // SRAM driver Open

:
// Access to the SRAM
Ret = SramByteRead(SramOffset, &SramData); // Reads data from the SRAM.

:
Ret = SramByteWrite(SramOffset, SramData); // Writes data into the SRAM.

:
// Application exit processing
// After the drivers are used, each driver should be set to Close.
// Call up the corresponding "xxx DriverOpen()" setting for each driver.
Ret = SramDriverClose();

Driver Name Library file
eMbedded Visual
C++ header file

eMbedded Visual
Basic header file

Backlight driver BlDrvIf.lib BlDrvApi.h BlDrvDef.bas

SRAM driver SramDrvIf.lib SramDrvApi.h SramDrvDef.bas

GMU-BUS driver GmuDrvIf.lib GmuDrvApi.h GmuDrvDef.bas

RAS driver RasDrvIf.lib RasDrvApi.h RasDrvDef.bas

Touch panel driver TouchDrvIf.lib TchDrvApi.h TchDrvDef.bas

3-3

3 Library Interface Reference

API name Description

GetBLDriverVersion Retrieves driver version information
BLDriverOpen Opens the backlight driver
BLDriverClose Closes the backlight driver
GetBLStatus Retrieves the backlight status
SetBLOnOff Turns the backlight ON/OFF
SetBLBright Sets the brightness of the backlight
SetBLAction Enables/disables input in the case of backlight burnout.
GetBLAction Retrieves backlight burnout settings.

SetBLTmOut
Sets the timer value used for turning the backlight OFF
when the PS-G is idle.

GetBLTmOut
Retrieves the timer value used for turning the backlight
OFF when the PS-G is idle.

1 Backlight Driver
The function of this driver is to set and control the backlight status. This driver’s functionality is
equivalent to the control panel icon.

1.1 Backlight Driver APIs

3-4

PS Series Type G Application Development Kit (ADK) Developer Manual

1.2 Function Specifications

GetBLDriverVersion

Call format
BOOL WINAPI GetBLDriverVersion (WORD *pMajor, WORD *pMinor)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD *pMajor Pointer to the version information (Major, 0 to 99)
WORD *pMinor Pointer to the version information (Minor, 0 to 99)

Processing performed
Retrieves information on the driver version.
E.g.) BOOL ret = GetBLDriverVersion (WORD &Major, WORD &Minor);

Note
When the driver version is 1.10,
Major is 1 (in decimal) and;
Minor is 10 (in decimal).

BLDriverOpen
Call format
BOOL WINAPI BLDriverOpen (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Opens the backlight driver, enabling features to be set.
E.g.) BOOL ret = BLDriverOpen ();

3-5

3 Library Interface Reference

BLDriverClose

Call format
BOOL WINAPI BLDriverClose (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Closes the backlight driver, disabling setting operations. However, the thread operation of the
driver continues.
E.g.) BOOL ret = BLDriverClose ();

GetBLStatus
Call format
BOOL WINAPI GetBLStatus (BYTE *pStatus)

Return value
TRUE: Normal
FALSE: Error

Argument
BYTE *pStatus Pointer to address where Backlight Status data is stored.

Backlight status
D7: Error
D4: Backlight burnout 1: Burnout 0: Normal
D3: Backlight status 1: ON 0: OFF
D2 to D0: Backlight brightness

Processing performed
Retrieves the ON/OFF status and brightness of the backlight.
E.g.) // Retrieves the backlight status.

BYTE Status;
BOOL ret = GetBLStatus (&Status);

3-6

PS Series Type G Application Development Kit (ADK) Developer Manual

SetBLOnOff
Call format
BOOL WINAPI SetBLOnOff (BOOL bSwitch)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bSwitch TRUE: Turns the backlight ON.

FALSE: Turns the backlight OFF.

Processing performed
Controls the backlight.
E.g.) // Turns the backlight OFF.

BOOL ret = GetBLOnOff (FALSE);

SetBLBright
Call format
BOOL WINAPI SetBLBright (BYTE Bright)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL Bright 0 to 3: 0 (darkest) to 3 (brightest)

Processing performed
Controls the brightness of the backlight.
E.g.) // Sets the backlight to its brightest level.

BOOL ret = SetBLBright (3);

3-7

3 Library Interface Reference

SetBLAction
Call format
BOOL WINAPI SetBLAction (BYTE Action)

Return value
TRUE: Normal
FALSE: Error

Argument
BYTE Action
D2: Input from touch panel 1: Enabled 0: Disabled
D1: Input from keyboard 1: Enabled 0: Disabled
D0: Input from mouse 1: Enabled 0: Disabled

Processing performed
Enables/disables input from the touch panel, keyboard, and mouse when backlight burnout is
detected.
The data for this setting will be stored in the registry.
E.g.) // Disables input from the touch panel, keyboard, and mouse in the case of backlight
burnout.

BOOL ret = SetBLAction (0);

GetBLAction
Call format
BOOL WINAPI GetBLAction (BYTE *pAction)

Return value
TRUE: Normal
FALSE: Error

Argument
BYTE *pAction Pointer to the setting for whether or not input is enabled in the case of

backlight burnout.
BYTE Action
D2: Input from touch panel 1: Enabled 0: Disabled
D1: Input from keyboard 1: Enabled 0: Disabled
D0: Input from mouse 1: Enabled 0: Disabled

Processing performed
Retrieves the setting for whether or not input from the touch panel, keyboard, and mouse is
enabled when backlight burnout is detected.
E.g.) // Retrieves the setting for input from the touch panel, keyboard, and mouse in the case of
backlight burnout.

BYTE Action;
BOOL ret = GetBLAction (&Action);

3-8

PS Series Type G Application Development Kit (ADK) Developer Manual

SetBLTmOut
Call format
BOOL WINAPI SetBLTmOut (DWORD TmOut)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD TmOut Specified timer value for turning the backlight OFF in the case of idle time

(0, 15, 30, 60, 120, 300, 600, 900, or 1800)

Processing performed
Sets the timer value used for turning the backlight OFF when there is no input via the touch panel,
keyboard, or mouse.
E.g.) DWORD TmOut = 120;

BOOL ret = SetBLTmOut (TmOut);

GetBLTmOut
Call format
BOOL WINAPI GetBLTmOut (DWORD *pTmOut)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD *pTmOut Pointer to the specified timer value for turning the backlight OFF in the

case of idle time

Processing performed
Retrieves the timer value used for turning the backlight OFF when there is no input via the touch
panel, keyboard, or mouse.
E.g.) DWORD TmOut;

BOOL ret = GetBLTmOut (&TmOut);

3-9

3 Library Interface Reference

2 SRAM Driver
The function of this driver is to read/write data from/to SRAM.
Up to 256KB is available. If a function’s return value exceeds 256KB during access, an error will
occur.

2.1 SRAM Driver APIs

2.2 Function Specifications

GetSramDriverVersion
Call format
BOOL WINAPI GetSramDriverVersion (WORD *pMajor, WORD *pMinor)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD *pMajor Pointer to the version information (Major, 0 to 99)
WORD *pMinor Pointer to the version information (Minor, 0 to 99)

Processing performed
Retrieves the driver version.
E.g.) BOOL ret = GetSramDriverVersion (WORD &Major, WORD &Minor);

Note
When the driver version is 1.10,
Major is 1 (in decimal) and;
Minor is 10 (in decimal).

API name Description

GetSramDriverVersion Retrieves information on the driver version.

SramDriverOpen Opens the SRAM driver.

SramDriverClose Closes the SRAM driver.

SramByteRead Reads data from the SRAM. (Byte)

SramWordRead Reads data from the SRAM. (Word)

SramLongRead Reads data from the SRAM. (Long)

SramByteWrite Writes data into the SRAM. (Byte)

SramWordWrite Writes data into the SRAM. (Word)

SramLongWrite Writes data into the SRAM. (Long)

3-10

PS Series Type G Application Development Kit (ADK) Developer Manual

SramDriverOpen
Call format
BOOL WINAPI SramDriverOpen (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Opens SRAM driver, enabling driver operations.
E.g.) BOOL ret = SramDriverOpen ();

SramDriverClose
Call format
BOOL WINAPI SramDriverClose (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Closes SRAM driver, disabling driver operations. However, driver thread operation continues.
E.g.) BOOL ret = SramDriverClose ();

3-11

3 Library Interface Reference

SramByteRead
Call format
BOOL WINAPI SramByteRead (DWORD Offset, BYTE *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the data to be read (in byte units)

(0 to 3ffffh)
BYTE *pData Pointer to the address where readout will be stored

Processing performed
Reads data from the specified address of SRAM.
E.g.) // Reads data of the byte 16th from the beginning of SRAM.

BYTE Data;
BOOL ret = SramByteRead (0x10, &Data);

SramWordRead
Call format
BOOL WINAPI SramWordRead (DWORD Offset, WORD *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the data to be read (in word units)

(0 to 1ffffh)
WORD *pData Pointer to the address where readout will be stored

Processing performed
Reads data from the specified address of SRAM.
E.g.) // Reads data of the word 16th from the beginning of SRAM.

WORD Data;
BOOL ret = SramWordRead (0x10, &Data);

3-12

PS Series Type G Application Development Kit (ADK) Developer Manual

SramLongRead
Call format
BOOL WINAPI SramLongRead (DWORD Offset, DWORD *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the data to be read (in double word

units)
(0 to ffffh)

WORD *pData Pointer to the address where the readout will be stored

Processing performed
Reads data from the specified address of SRAM.
E.g.) // Reads double word data, 16th from the beginning of SRAM.

WORD Data;
BOOL ret = SramLongRead (0x10, &Data);

SramByteWrite
Call format
BOOL WINAPI SramByteWrite (DWORD Offset, BYTE Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the destination of the data to be

written (in byte units)
(0 to 3ffffh)

BYTE Data Data to be written

Processing performed
Writes the designated data into the specified address of SRAM.
E.g.) // Writes data (aah) to the byte 16th from the beginning of SRAM.

BOOL ret = SramByteWrite (0x10, 0xaa);

3-13

3 Library Interface Reference

SramWordWrite
Call format
BOOL WINAPI SramWordWrite (DWORD Offset, WORD Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the destination of the data to be

written (in word units)
(0 to 1ffffh)

WORD Data Data to be written

Processing performed
Writes the given data into the specified SRAM address.
E.g.) // Writes data (55aah) to the word 16th from the beginning of SRAM.

BOOL ret = SramWordWrite (0x10, 0x55aa);

SramLongWrite
Call format
BOOL WINAPI SramLongWrite (DWORD Offset, DWORD Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of SRAM to the destination of the data to be

written (in double word units)
(0 to ffffh)

DWORD Data Data to be written

Processing performed
Writes the given data to the specified SRAM address.
E.g.) // Writes the data (55aa55aah) into the double word 16th from the beginning of SRAM.

BOOL ret = SramLongWrite (0x10, 0x55aa55aa);

3-14

PS Series Type G Application Development Kit (ADK) Developer Manual

3 GMU-BUS Driver
This driver provides GMU-BUS control. Interrupt support is provided via registration of the user

callback routine.

3.1 GMU-BUS Driver APIs

3.2 Function Specifications

GetGmuDriverVersion
Call format
BOOL WINAPI GetGmuDriverVersion (WORD *pMajor, WORD *pMinor)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD *pMajor Pointer to version information (Major, 0 to 99)
WORD *pMinor Pointer to version information (Minor, 0 to 99)

Processing performed
Retrieves information on the driver version.
E.g.) BOOL ret = GetGmuDriverVersion (WORD &Major, WORD &Minor);

Note
When the driver version is 1.10,
Major is 1 (in decimal) and;
Minor is 10 (in decimal).

API name Description

GetGmuDriverVersion Retrieves the driver version.

GmuDriverOpen Opens the GMU-BUS driver.

GmuDriverClose Closes the GMU-BUS driver.

GmuByteRead Reads data from the GMU. (Byte)

GmuWordRead Reads data from the GMU. (Word)

GmuLongRead Reads data from the GMU. (Long)

GmuByteWrite Writes data to the GMU. (Byte)

GmuWordWrite Writes data to the GMU. (Word)

GmuLongWrite Writes data to the GMU. (Long)
SetGmuCallbackIntA Registers the GMU IntA Callback.
SetGmuCallbackIntB Registers the GMU IntB Callback.

3-15

3 Library Interface Reference

GmuDriverOpen
Call format
BOOL WINAPI GmuDriverOpen (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Opens the GMU-BUS driver, enabling driver operations.
E.g.) BOOL ret = GmuDriverOpen ();

GmuDriverClose
Call format
BOOL WINAPI GmuDriverClose (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Closes the GMU-BUS driver, disabling driver operations. However, driver thread operation
continues.
E.g.) BOOL ret = GmuDriverClose ();

3-16

PS Series Type G Application Development Kit (ADK) Developer Manual

GmuByteRead
Call format
BOOL WINAPI GmuByteRead (DWORD Offset, BYTE *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the data to be read (in byte units)
BYTE *pData Pointer to the address where readout will be stored

Processing performed
Reads data from the specified address of the GMU.
E.g.) // Reads data of the byte 16th from the beginning of the GMU.

BYTE Data;
BOOL ret = GmuByteRead (0x10, &Data);

GmuWordRead
Call format
BOOL WINAPI GmuWordRead (DWORD Offset, WORD *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the data to be read (in word units)
WORD *pData Pointer to the address in which the readout will be stored

Processing performed
Reads data from the specified address of the GMU.
E.g.) // Reads data of the word 16th from the beginning of the GMU.

WORD Data;
BOOL ret = GmuWordRead (0x10, &Data);

3-17

3 Library Interface Reference

GmuLongRead
Call format
BOOL WINAPI GmuLongRead (DWORD Offset, DWORD *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the data to be read (in double word

units)
DWORD *pData Pointer to the address where readout will be stored

Processing performed
Reads data from the specified GMU address.
E.g.) // Reads data of the double word 16th from the beginning of the GMU.

DWORD Data;
BOOL ret = GmuLongRead (0x10, &Data);

GmuByteWrite
Call format
BOOL WINAPI GmuByteWrite (DWORD Offset, BYTE Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the destination of the data to be

written (in byte units)
BYTE Data Data to be written

Processing performed
Writes the specified data into the specified GMU address.
E.g.) // Writes data (aah) to the byte 16th from the beginning of the GMU.

BOOL ret = GmuByteWrite (0x10, 0xaa);

3-18

PS Series Type G Application Development Kit (ADK) Developer Manual

GmuWordWrite
Call format
BOOL WINAPI GmuWordWrite (DWORD Offset, WORD Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the destination of the data to be

written (in word units)
WORD Data Data to be written

Processing performed
Writes the designated data to the specified GMU address.
E.g.) // Writes the data (55aah) into the word 16th from the beginning of the GMU.

BOOL ret = GmuWordWrite (0x10, 0x55aa);

GmuLongWrite
Call format
BOOL WINAPI GmuLongWrite (DWORD Offset, DWORD Data)

Return value
TRUE: Normal
FALSE: Error

Argument
DWORD Offset Offset from the beginning of the GMU to the destination of the data to be

written (in double word units)
DWORD Data Data to be written

Processing performed
Writes the designated data into the specified GMU address.
E.g.) // Writes data (55aa55aah) to the double word 16th from the beginning of the GMU.

BOOL ret = GmuLongWrite (0x10, 0x55aa55aa);

3-19

3 Library Interface Reference

SetGmuCallbackIntA
Call format
BOOL WINAPI SetGmuCallbackIntA (GMUPROC lpCallbackFunc)

Return value
TRUE: Normal
FALSE: Error

Argument
GMUPROC lpCallbackFunc Long pointer to the interrupt processing function

When set to NULL, cancels the registration of the function
selected for interrupt processing.

Processing performed
Registers the function used for interrupt processing when a GMU IntA occurs.

SetGmuCallbackIntB
Call format
BOOL WINAPI SetGmuCallbackIntB (GMUPROC lpCallbackFunc)

Return value
TRUE: Normal
FALSE: Error

Argument
GMUPROC lpCallbackFunc Long pointer to the interrupt processing function

When set to NULL, cancels the registration of the function
selected for interrupt processing.

Processing performed
Registers the function used for interrupt processing when a GMU IntB occurs.

3-20

PS Series Type G Application Development Kit (ADK) Developer Manual

4 RAS Driver
This driver provides RAS function control. It supports the watchdog timer, remote reset input,
standard signal inputs (two), standard signal output (one), and alarm output (one).
Each of the actions to be performed can also be designated from the control panel. This driver
provides functions equivalent to the control panel.

4.1 RAS Driver APIs

<Common functions>

<Watchdog timer functions>

Setting/display
dialog control

API name Description
H/W

resister/registry

Common GetRasDriverVersion
Retrieves information on the driver
version.

RasDriverOpen Opens the RAS driver.

RasDriverClose Closes the RAS driver.

BuzzerControl Controls ON/OFF of the buzzer.

AlarmControl
Controls ON/OFF of the
ALARMOUT.

RAS IN/OUT

DoutControl Controls ON/OFF of the DOUT. RAS IN/OUT

SetRasRegister Writes data into the RAS resister.

GetRasRegister Reads data from the RAS resister.

Setting/display
dialog control

API name Description
H/W

resister/registry
WDT Enable SetWdtEnable Enables/disables the watchdog timer. Registry W

GetWdtEnable
Retrieves the setting for whether the
watchdog timer is enabled.

Registry R

Counter SetWdtCounter Sets the counter value. Registry W

GetWdtCounter Retrieves the counter value setting. Registry R

Alarm SetWdtMask Sets the alarm mask. Registry W

GetWdtMask Retrieves the alarm mask setting. Registry R

Buzzer SetWdtBuzzer
Enables/disables the buzzer
activation.

Registry W

GetWdtBuzzer
Retrieves the buzzer activation
setting.

Registry R

Reset SetWdtReboot Enables/disables reboot. Registry W

GetWdtReboot Retrieves the reboot setting. Registry R

Popup Enable SetWdtPopup
Enables/disables the pop-up
message.

Registry W

GetWdtPopup
Retrieves the setting for whether the
pop-up message is enabled.

Registry R

Popup Message SetWdtMessage Sets the pop-up message. Registry W

GetWdtMssage
Retrieves the pop-up message
setting.

Registry R

3-21

3 Library Interface Reference

<Watchdog timer functions>

<DIN functions>

<Remote reset functions>

Setting/display
dialog control

API name Description
H/W

resister/registry
WDT SetWdtControl Starts/stops the watchdog timer. WDT_CNTL

GetWdtControl
Retrieves the start/stop setting for
the watchdog timer.

WDT_CNTL

GetWdtTimeout
Retrieves the information on
occurrence of the watchdog timer
time-out.

WDT_STT

ClearWdtTimeout
Clears the watchdog timer time-out
state.

WDT_STT

RefleshWdtTime Resets the watchdog timer. WDT_COUNT

User application

Setting/display
dialog control

API name Description
H/W

resister/registry
Enable SetDinEnable Enables/disables DIN port input. Registry W

GetDinEnable
Retrieves the setting for whether DIN
port input is enabled.

Registry R

Alarm SetDinAlarmOut Enables/disables alarm output. Registry W

GetDinAlarmOut
Retrieves the setting for whether
alarm output is enabled.

Registry R

Buzzer SetDinBuzzer Enables/disables buzzer output. Registry W

GetDinBuzzer
Retrieves the setting for whether
buzzer output is enabled.

Registry R

RAS Output SetDinDout Enables/disables DOUT output. Registry W

GetDinDout
Retrieves the setting for whether
DOUT output is enabled.

Registry R

Popup Enable SetDinPopup
Enables/disables pop-up message
output.

Registry W

GetDinPopup
Retrieves the setting for whether
pop-up message output is enabled.

Registry R

Popup Message SetDinMessage Sets the pop-up message. Registry W

GetDinMessage
Retrieves the pop-up message
setting.

Registry R

DIN

Setting/display
dialog control

API name Description
H/W

resister/registry
Enable

SetRstEnable Enables/disables remote reset. Registry W

GetRstEnable
Retrieves the setting for whether
remote reset is enabled.

Registry R

Remote
Reset

3-22

PS Series Type G Application Development Kit (ADK) Developer Manual

4.2 Details of Function Specifications

<Common functions>

GetRasDriverVersion
Call format
BOOL WINAPI GetRasDriverVersion (WORD *pMajor, WORD *pMinor)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD *pMajor Pointer to the version information (Major, 0 to 99)
WORD *pMinor Pointer to the version information (Minor, 0 to 99)

Processing performed
Retrieves driver version information.
E.g.) BOOL ret = GetRasDriverVersion (WORD &Major, WORD &Minor);

Note
When the driver version is 1.10,
Major is 1 (in decimal) and;
Minor is 10 (in decimal).

RasDriverOpen
Call format
BOOL WINAPI RasDriverOpen (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Opens the RAS driver, enabling setting operations.
E.g.) BOOL ret = RasDriverOpen ();

3-23

3 Library Interface Reference

RasDriverClose
Call format
BOOL WINAPI RasDriverClose (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Closes the RAS driver, disabling setting operations. However, driver thread operation continues.
E.g.) BOOL ret = RasDriverClose ();

BuzzerControl
Call format
BOOL WINAPI BuzzerControl (short length)

Return value
TRUE: Normal
FALSE: Error

Argument
Short length ON (-1): Buzzer is ON.

OFF (0): Buzzer is OFF.
1 to 32767: Buzzer length (in ms)

Processing performed
Controls ON/OFF of the buzzer.
E.g.) // Sounds the buzzer for 100 ms.

BOOL ret = BuzzerControl (100);

3-24

PS Series Type G Application Development Kit (ADK) Developer Manual

AlarmControl
Call format
BOOL WINAPI AlarmControl (BOOL bSwitch)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bSwitch TRUE: ALARMOUT output

FALSE: Stops ALARMOUT output

Processing performed
Controls the ALARMOUT port.
E.g.) // Turns the ALARMOUT OFF.

BOOL ret = AlarmControl (FALSE);

DoutControl
Call format
BOOL WINAPI DoutControl (BOOL bSwitch)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bSwitch TRUE: DOUT output

FALSE: Stops DOUT output

Processing performed
Controls the DOUT port.
E.g.) // Turns the DOUT ON.

BOOL ret = DoutControl (TRUE);

3-25

3 Library Interface Reference

SetRasRegister
Call format
BOOL WINAPI SetRasRegister (WORD RegNo, BYTE Data)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD RegNo Register designation *1
BYTE Data Data to be set in the register

Register designation
#define RAS_IN_MASK 0
#define RAS_IN_OUT 1
#define WDT_CR 2
#define WDT_COUNT 3

Processing performed
Sets the application’s designated data to the designated port.
E.g.) // Sets 0 in the RAS_IN_MASK register.

BOOL ret = SetRasRegister (RAS_IN_MASK, 0);

GetRasRegister
Call format
BOOL WINAPI GetRasRegister (WORD RegNo, BYTE *pData)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD RegNo Number of the resister to be read
BYTE *pData Pointer to the data to be read

Processing performed
Reads the port specified by the application.
E.g.) // Reads the RAS_IN_MASK register.

BYTE Data;
BYTE ret = GetRasRegister (RAS_IN_MASK, &Data);

*1: For details on the registers, refer to “4.3 Details of the Registers” in Chapter 3.

3-26

PS Series Type G Application Development Kit (ADK) Developer Manual

<Watchdog timer functions>

SetWdtEnable
Call format
BOOL WINAPI SetWdtEnable (BOOL bEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bEnable TRUE: Enables the watchdog timer.

FALSE: Disables the watchdog timer.

Processing performed
Enables/disables the watchdog timer.
E.g.) BOOL ret = SetWdtEnable(TRUE);

GetWdtEnable
Call format
BOOL WINAPI GetWdtEnable (BOOL *pEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pEnable Pointer to the watchdog timer setting

Processing performed
Retrieves the setting for whether or not the watchdog timer is enabled.
E.g.) BOOL Enable;

BOOL ret = GetWdtEnable(&Enable);

3-27

3 Library Interface Reference

SetWdtCounter
Call format
BOOL WINAPI SetWdtCounter (BYTE Counter)

Return value
TRUE: Normal
FALSE: Error

Argument
BYTE Counter Initial counter value (5 to 255) for the watchdog timer (in sec.)

Processing performed
Sets the initial counter value for the watchdog timer. (WDT COUNT)
E.g.) // Sets 10 seconds as the initial counter value for the watchdog timer.

BOOL ret = SetWdtCounter (10);

GetWdtCounter
Call format
BOOL WINAPI GetWdtCounter (BYTE *pCounter)

Return value
TRUE: Normal
FALSE: Error

Argument
BYTE *pCounter Pointer to the initial counter value (in sec.) for the watchdog timer

Processing performed
Retrieves the initial counter value currently set for the watchdog timer. (WDT COUNT)
E.g.) Byte Counter;

BOOL ret = GetWdtCounter (&Counter);

3-28

PS Series Type G Application Development Kit (ADK) Developer Manual

SetWdtMask
Call format
BOOL WINAPI SetWdtMask (BOOL bMask)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bMask TRUE: Sets the mask for the watchdog timer alarm.

FALSE: Removes the mask for the watchdog timer alarm.

Processing performed
Sets/removes the mask for the front LED control and the alarm to be output in the event of
watchdog timer time-out.
E.g.) // Removes the mask for the ALARM output.

BOOL ret = SetWdtMask (FALSE);

GetWdtMask
Call format
BOOL WINAPI GetWdtMask (BOOL *pMask)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pMask Pointer to the mask setting for the watchdog timer

Processing performed
Retrieves the mask setting for the front LED control and the alarm to be output in the event of
watchdog timer time-out.
E.g.) // Retrieves the mask setting for the ALARM.

BOOL Mask;
BOOL ret = GetWdtMask (&Mask);

3-29

3 Library Interface Reference

SetWdtBuzzer
Call format
BOOL WINAPI SetWdtBuzzer (BOOL bBuzzer)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bBuzzer TRUE: Enables the buzzer.

FALSE: Disables the buzzer.

Processing performed
Enables/disables the buzzer to operate in the event of watchdog timer time-out.
E.g.) BOOL ret = SetWdtBuzzer (TRUE);

GetWdtBuzzer
Call format
BOOL WINAPI GetWdtBuzzer (BOOL *pBuzzer)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pBuzzer Pointer to the buzzer activation setting

Processing performed
Retrieves the setting for whether or not the buzzer is enabled to operate in the event of watchdog
timer time-out.
E.g.) BOOL Buzzer;

BOOL ret = GetWdtBuzzer (&Buzzer);

3-30

PS Series Type G Application Development Kit (ADK) Developer Manual

SetWdtReboot
Call format
BOOL WINAPI SetWdtReboot (BOOL bReboot)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bReboot TRUE: Enables reboot.

FALSE: Disables reboot.

Processing performed
Enables/disables reboot in the event of watchdog timer time-out.
E.g.) BOOL ret = SetWdtReboot (TRUE);

GetWdtReboot
Call format
BOOL WINAPI GetWdtReboot (BOOL *pReboot)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pReboot Pointer to the reboot setting

Processing performed
Retrieves the setting for whether or not reboot is enabled in the event of watchdog timer time-out.
E.g.) BOOL Reboot;

BOOL ret = SetWdtReboot (&Reboot);

SetWdtPopup
Call format
BOOL WINAPI SetWdtPopup (BOOL bPopup)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bPopup TRUE: Enables the pop-up message.

FALSE: Disables the pop-up message.

Processing performed
Enables/disables the pop-up message to appear in the event of watchdog timer time-out.
E.g.) BOOL ret = SetWdtPopup (TRUE);

3-31

3 Library Interface Reference

GetWdtPopup
Call format
BOOL WINAPI GetWdtPopup (BOOL *pPopup)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pPopup Pointer to the pop-up message setting

Processing performed
Retrieves the setting for whether or not the pop-up message is enabled to appear in the event of
watchdog timer time-out.
E.g.) BOOL Popup;

BOOL ret = GetWdtPopup (&Popup);

SetWdtMessage
Call format
BOOL WINAPI SetWdtMessage (wchar_t *pMessage)

Return value
TRUE: Normal
FALSE: Error

Argument
wchar_t *pMessage Pointer to the pop-up message

Processing performed
Sets the pop-up message which appears in the event of watchdog timer time-out.
E.g.) BOOL ret = SetWdtMessage (L” Watchdog timer time-out”);

3-32

PS Series Type G Application Development Kit (ADK) Developer Manual

GetWdtMessage
Call format
BOOL WINAPI GetWdtMessage (wchar_t *pMessage)

Return value
TRUE: Normal
FALSE: Error

Argument
wchar_t *pMessage Pointer to the pop-up message storage area

Processing performed
Retrieves the pop-up message which appears in the event of watchdog timer time-out.
E.g.) wchar_t msg[32];

BOOL ret = GetWdtMessage (msg);

SetWdtControl
Call format
BOOL WINAPI SetWdtControl (BOOL bCont)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bCont TRUE: Starts the watchdog timer.

FALSE: Stops the watchdog timer.

Processing performed
Starts/stops the watchdog timer. Start, stop and refresh of the watchdog timer are not triggered via
the driver. They are performed via the application’s timing of the driver function call. As soon as
the driver detects the time-out, it takes the specified action(s).
E.g.) BOOL ret = SetWdtControl (TRUE);

3-33

3 Library Interface Reference

GetWdtControl
Call format
BOOL WINAPI GetWdtControl (BOOL *bCont)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *bCont Pointer to the start/stop setting of the watchdog timer

TRUE: The watchdog timer has been started.
FALSE: The watchdog timer has been stopped.

Processing performed
Retrieves the start/stop setting of the watchdog timer.
E.g.) BOOL Cont;

BOOL ret = GetWdtControl (&Cont);

GetWdtTimeout
Call format
BOOL WINAPI GetWdtTimeout (BOOL *pTOut)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pTOut Pointer to the watchdog timer time-out information

TRUE: The watchdog timer time-out has occurred.
FALSE: The watchdog timer time-out has not occurred.

Processing performed
After reading the WDT_STT, this function retrieves the information on whether or not the
watchdog timer time-out has occurred.
E.g.) BOOL TOut;

BOOL ret = GetWdtTimeOut (&TOut);

3-34

PS Series Type G Application Development Kit (ADK) Developer Manual

ClearWdtTimeout
Call format
BOOL WINAPI ClearWdtTimeout (void);

Return value
TRUE: Normal
FALSE: Error

Argument
Nothing

Processing performed
Clears the watchdog timer time-out state. (WDT_STT)
E.g.) // Clears the watchdog timer time-out state.

BOOL ret = CleanWdtTimeout ();

RefleshWdtTime
Call format
BOOL WINAPI RefleshWdtTime (void);

Return value
TRUE: Normal
FALSE: Error

Argument
Nothing

Processing performed
Resets the watchdog timer counter (WDT_STT) to the initial counter value preset by the
SetWdtCounter.
E.g.) // Refreshes the watchdog timer.

BOOL ret = RefleshWdtTime ();

3-35

3 Library Interface Reference

<DIN functions>

SetDinEnable
Call format
BOOL WINAPI SetDinEnable (WORD inp, BOOL bEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL bEnable TRUE: Enables DIN port input.

FALSE: Disables DIN port input.

Processing performed
Enables/disables DIN0/DIN1 port input.
E.g.) BOOL ret = SetDinEnable (0, TRUE);

GetDinEnable
Call format
BOOL WINAPI GetDinEnable (WORD inp, BOOL *pEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL *pEnable Pointer to the DIN port setting

Processing performed
Retrieves the setting for whether or not DIN0/DIN1 port input is enabled.
E.g.) // Retrieves the DIN port setting.

BOOL Enable;
BOOL ret = GetDinEnable (0, &Enable);

3-36

PS Series Type G Application Development Kit (ADK) Developer Manual

SetDinAlarmOut
Call format
BOOL WINAPI SetDinAlarmOut (WORD inp, BOOL bAlm)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL bAlm TRUE: Enables alarm output.

FALSE: Disables alarm output.

Processing performed
Enables/disables alarm output.
E.g.) BOOL ret = SetDinAlarmOut (0, TRUE);

GetDinAlarmOut
Call format
BOOL WINAPI GetDinAlarmOut (WORD inp, BOOL *pAlm)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL *pAlm Pointer to the setting for whether or not alarm output is enabled while the

DIN0/DIN1 port is active

Processing performed
Retrieves the setting for whether or not alarm output is enabled while the DIN0/DIN1 port is
active.
E.g.) // Retrieves the setting for alarm output through the DIN port.

BOOL Alm;
BOOL ret = GetDinAlarmOut (0, &Alm);

3-37

3 Library Interface Reference

SetDinBuzzer
Call format
BOOL WINAPI SetDinBuzzer (WORD inp, BOOL bBuzzer);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL bBuzzer Enables/disables buzzer output.

Processing performed
Enables/disables buzzer output while the DIN0/DIN1 port is active.
E.g.) // Disables buzzer output through the DIN port.

BOOL ret = SetDinBuzzer (0, FALSE);

GetDinBuzzer
Call format
BOOL WINAPI GetDinBuzzer (WORD inp, BOOL *pBuzzer);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL *pBuzzer Pointer to the setting for whether or not buzzer output is enabled.

Processing performed
Retrieves the setting for whether or not buzzer output is enabled while the DIN0/DIN1 port is
active.
E.g.) // Retrieves the setting for buzzer output through the DIN port.

BOOL Buzzer;
BOOL ret = GetDinBuzzer (0, &Buzzer);

3-38

PS Series Type G Application Development Kit (ADK) Developer Manual

SetDinDout
Call format
BOOL WINAPI SetDinDout (WORD inp, BOOL bRasout);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL bRasout Enables/disables DOUT output.

Processing performed
Enables/disables DOUT output while the DIN0/DIN1 port is active.
E.g.) // Disables DOUT output.

BOOL ret = SetDinDout (0, TRUE);

GetDinDout
Call format
BOOL WINAPI GetDinDout (WORD inp, BOOL *pRasOut);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL *pRasOut Pointer to the setting for whether or not DOUT output is enabled.

Processing performed
Retrieves the setting for whether or not DOUT output is enabled while the DIN0/DIN1 port is
active.
E.g.) // Retrieves the DOUT output setting.

BOOL RasOut;
BOOL ret = GetDinDout (0, &RasOut);

3-39

3 Library Interface Reference

SetDinPopup
Call format
BOOL WINAPI SetDinPopup (WORD inp, BOOL bPopup);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL bPopup Enables/disables pop-up message output.

Processing performed
Enables/disables pop-up message output while the DIN0/DIN1 port is active.
E.g.) // Enables pop-up message output.

BOOL ret = SetDinPopup (0, TRUE);

GetDinPopup
Call format
BOOL WINAPI GetDinPopup (WORD inp, BOOL *pPopup);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
BOOL *pPopup Pointer to the setting for whether or not pop-up message output is enabled.

Processing performed
Retrieves the setting for whether or not pop-up message output is enabled while the DIN0/DIN1
port is active.
E.g.) // Retrieves the pop-up message output setting.

BOOL Popup;
BOOL ret = GetDinPopup (0, &Popup);

3-40

PS Series Type G Application Development Kit (ADK) Developer Manual

SetDinMessage
Call format
BOOL WINAPI SetDinMessage (WORD inp, wchar_t *pMessage);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
wchar_t *pMessage Pointer to the pop-up message.

Processing performed
Sets the pop-up message while the DIN0/DIN1 port is active.
E.g.) BOOL ret = SetDinMessage (1, L” Universal Input Active”);

GetDinMessage
Call format
BOOL WINAPI GetDinMessage (WORD inp, wchar_t *pMessage);

Return value
TRUE: Normal
FALSE: Error

Argument
WORD inp 0 or 1: DIN port number
wchar_t *pMessage Pointer to the pop-up message

Processing performed
Retrieves the pop-up message while the DIN0/DIN1 port is active.
E.g.) wchar_t msg [32];

BOOL ret = GetDinMessage (1, msg);

3-41

3 Library Interface Reference

<Remote reset functions>

SetRstEnable
Call format
BOOL WINAPI SetRstEnable (BOOL bEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bEnable TRUE: Enables remote reset input.

FALSE: Disables remote reset input.

Processing performed
Enables/disables remote reset input.
E.g.) BOOL ret = SetRstEnable (TRUE);

GetRstEnable
Call format
BOOL WINAPI GetUniEnable (BOOL *pEnable)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *pEnable Pointer to the setting for whether or not remote reset input is enabled.

Processing performed
Retrieves the setting for whether or not remote reset input is enabled.
E.g.) // Retrieves the remote reset input setting.

BOOL Enable;
BOOL ret = GetRstEnable (&Enable);

3-42

PS Series Type G Application Development Kit (ADK) Developer Manual

4.3 Register Details

RAS_IN_MASK
RAS IN MASK register
Read/Write

RMT_RST_MASK Remote reset mask
1: External remote reset input is enabled. (Default)
0: External remote reset input is disabled.

IN1_MASK DIN1 input mask
1: DIN1 input is enabled.
0: DIN1 input is disabled. (Default)

IN0_MASK DIN0 input mask
1: DIN0 input is enabled.
0: DIN0 input is disabled. (Default)

RAS_IN_OUT
RAS IN/OUT register
Read/Write

LEDR Front red LED control (Independent functioning of Alarm Output)
When the RAS_ALM register is 0 and the WDT_ALM_MSK register is 1 (independent of the
WDT_STT register), the control is enabled.
When the RAS_ALM register is 1 or the WDT_ALM_MSK register is 0, and the WDT_STT
register is 1 (WDT error status), the red LED is ON as priority is given to the latter status.
1: The front red LED is ON. (Default)
0: The front red LED is OFF.

Register B7 B6 B5 B4 B3 B2 B1 B0 Note

RAS IN MASK -- --
RMT_
RST_
MASK

-- -- --
IN1_

MASK
IN0_

MASK
8th to 15th bits
invalid "0".

Register B7 B6 B5 B4 B3 B2 B1 B0 Note

RAS IN/OUT LEDR LEDG --
RAS_
ALM

RAS_
OUT0

RAS_
IN1

RAS_
IN0

8th to 15th bits
invalid "0".

3-43

3 Library Interface Reference

LEDG Front green LED control
1: The front green LED is ON.
0: The front green LED is OFF. (Default)

RAS_ALM Control of Alarm Output and front bezel LED
When the WDT_ALM_MASK register is 0 and the WDT_STT register is 1, Alarm Output is ON
and the orange LED is ON (the red LED is also ON), regardless of the RAS_ALM register status.
1: Alarm Output is ON.

Front LED: The orange LED is ON. (The red LED is ON.)
2: Alarm Output is OFF. (Default)

Front LED: The green LED is ON. (The red LED is OFF.)

RAS_OUT0 DOUT control
1: DOUT0 is ON.
2: DOUT0 is OFF. (Default)

RAS_IN1 DIN1 control
When DIN1 is not masked, the DIN1 status is retained until 1 is written in this bit.
DIN1 input is accepted as soon as the signal changes from 0 to 1.
1: There is a DIN1 input. (Read) / Status clear (Write)
0: There is no DIN1 input. (Read) (Default)

RAS_IN0 DIN0 control
When DIN0 is not masked, the DIN0 status is retained until 1 is written in this bit.
DIN0 input is accepted as soon as the signal changes from 0 to 1.
1: There is a DIN0 input. (Read) / Status clear (Write)
0: There is no DIN0 input. (Read) (Default)

3-44

PS Series Type G Application Development Kit (ADK) Developer Manual

WDT_CR
Watchdog timer control register
Read/Write

WDT_ALD Watchdog timer automatic load
The data in the counter resister is loaded into the watchdog timer as the initial value.
1: The initial value for the counter is loaded. (Write)
0: This bit remains set to 0 at the time of reading. (Read) (Default)

WDT_STT Watchdog timer time-out status
1: The watchdog timer time-out has occurred. (Read)

The time-out state is cleared. (Write)
0: The watchdog timer time-out has not occurred. (Read) (Default)

WDT_ALM_MASK Watchdog timer alarm mask
1: The mask is enabled. (Default)
0: The alarm is output to the RAS connector in the event of time-out.

WDT_CNTL Watchdog timer counter control
The operation of the watchdog timer is supported by repeated start and stop before the specified
time-out limit passes. If the counter is not stopped before the specified time-out limit passes,
Alarm/Lamp Out is output and 1 is set in the WDT_STT.
1: The counter is started.
2: The counter is stopped./The time-out status is cleared./The initial value is loaded. (Default)

Register B7 B6 B5 B4 B3 B2 B1 B0 Note

WDT CR
WDT_
ALD

-- --
WDT_
STT

WDT_
ALM_
MASK

-- --
WDT_
CNTL

8th to 15th bits
invalid "0".

3-45

3 Library Interface Reference

WDT_COUNT
Watchdog timer counter register
Read/Write

WDT_COUNT 0 to 7 Initial value for the timer. One count is approximately equal to one
second.

(Default: FF)
Sets the initial value to be loaded into the watchdog timer.

Register B7 B6 B5 B4 B3 B2 B1 B0 Note
WDT
COUNT

WDT_
COUNT
7
(MSB)

WDT_
COUNT
6

WDT_
COUNT
5

WDT_
COUNT
4

WDT_
COUNT
3

WDT_
COUNT
2

WDT_
COUNT
1

WDT_
COUNT
0
(LSB)

8th to 15th bits
invalid "0".

3-46

PS Series Type G Application Development Kit (ADK) Developer Manual

5 Touch Panel Driver
The function of this driver is to enable/disable buzzer activation and input when the touch panel is
touched.

5.1 Touch Panel Driver APIs

5.2 Function Specifications

GetTouchDriverVersion
Call format
BOOL WINAPI GetTouchDriverVersion (WORD *pMajor, WORD *pMinor)

Return value
TRUE: Normal
FALSE: Error

Argument
WORD *pMajor Pointer to the version information (Major, 0 to 99)
WORD *pMinor Pointer to the version information (Minor, 0 to 99)

Processing performed
Retrieves information on the driver version.
E.g.) BOOL ret = GetTouchDriverVersion (WORD &Major, WORD &Minor);

Note
When the driver version is 1.10,
Major is 1 (in decimal) and;
Minor is 10 (in decimal).

API name Description
GetTouchDriverVersion Retrieves information on the driver version.
TouchDriverOpen Opens the touch panel driver.
TouchDriverClose Closes the touch panel driver.

SetTouchClickBuzzer
Enables/disables the buzzer when the touch
panel is touched.

GetTouchClickBuzzer
Retrieves the setting for buzzer activation
when the touch panel is touched.

SetTouchInput
Enables/disables input when the touch panel
is touched.

GetTouchInput
Retrieves the setting for input when the touch
panel is touched.

3-47

3 Library Interface Reference

TouchDriverOpen
Call format
BOOL WINAPI TouchDriverOpen (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Opens the touch panel driver, enabling setting operations.
E.g.) BOOL ret = TouchDriverOpen ();

TouchDriverClose
Call format
BOOL WINAPI TouchDriverClose (void)

Return value
TRUE: Normal
FALSE: Error

Argument
None

Processing performed
Closes the touch panel driver, disabling setting operations. However, the thread operation of the
driver continues.
E.g.) BOOL ret = TouchDriverClose ();

3-48

PS Series Type G Application Development Kit (ADK) Developer Manual

SetTouchClickBuzzer (BOOL bState)
Call format
BOOL WINAPI SetTouchClickBuzzer (BOOL bState)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bState TRUE: Turns the buzzer ON.

FALSE: Turns the buzzer OFF.

Processing performed
Enables/disables the buzzer to activate when the touch panel is clicked.
E.g.) // Enables the buzzer to operate when the touch panel is clicked.

BOOL ret = SetTouchClickBuzzer (TRUE);

GetTouchClickBuzzer (BOOL *bState)
Call format
BOOL WINAPI GetTouchClickBuzzer (BOOL *bState)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *bState Pointer to the buzzer activation setting when the touch panel is clicked

Processing performed
Retrieves the setting for whether or not the buzzer is enabled when the touch panel is clicked.
E.g.) // Retrieves the buzzer activation setting when the touch panel is clicked.

BOOL State;
BOOL ret = GetTouchClickBuzzer (&State);

3-49

3 Library Interface Reference

SetTouchInput (BOOL bState)
Call format
BOOL WINAPI SetTouchInput (BOOL bState)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL bState TRUE: Enables input.

FALSE: Disables input.

Processing performed
Enables/disables input when the touch panel is touched.
E.g.) // Enables input when the touch panel is touched.

BOOL ret = SetTouchInput (TRUE);

GetTouchInput (BOOL *bState)
Call format
BOOL WINAPI GetTouchInput (BOOL *bState)

Return value
TRUE: Normal
FALSE: Error

Argument
BOOL *bState Pointer to the setting for input when the touch panel is touched.

Processing performed
Retrieves the setting for whether or not input is enabled when the touch panel is touched.
E.g.) // Retrieves the setting for input when the touch panel is touched.

BOOL State;
BOOL ret = GetTouchInput (&State);

3-50

PS Series Type G Application Development Kit (ADK) Developer Manual

Index-1

Index
A

About Trademarks .. 3
ADK Files .. 1-6
Auto Start ... 2-14

B

Backlight Driver .. 3-3
Backlight Driver APIs .. 3-3
Building and Downloading a Program 2-5

C

CD-ROM Contents ... 5
Common functions3-20, 3-22

D

Data Transfer Cable ... 1-3
Debugging Programs Using the Emulator 2-12
DIN functions ..3-21, 3-35

E

emulation ...1-4, 1-8

F

Function Specifications3-4, 3-9, 3-14, 3-22, 3-46

G

GMU-BUS Driver ... 3-14
GMU-BUS Driver APIs 3-14

H

Hardware Environment 1-3
header file .. 3-2

I

Installing Application Development Tools 1-8

P

Platform Manager Configuration 1-14

R

RAS Driver .. 3-20
RAS Driver APIs ... 3-20
Registers Details .. 3-42
Remote Connection Procedure 1-6
Remote reset functions3-21, 3-41
remote tools ...1-4, 1-8

S

Software Environment and Installation 1-5
SRAM Driver ... 3-9
SRAM Driver APIs .. 3-9

T

Touch Panel Driver .. 3-46
Touch Panel Driver APIs 3-46

U

Usage Precautions .. 6

W

Watchdog timer functions 3-20, 3-21, 3-26
Win32 API ... 1-2

Global Head Office
Digital Electronics Corporation
8-2-52 Nanko-higashi,
Suminoe-ku, Osaka 559-0031 JAPAN
Tel:+81 (0)6 6613 3116 Fax:+81(0)6 6613 5888
http://www.pro-face.com support@digital.co.jp

South Korea
Pro-face Korea Co., Ltd.
Room #701, Jaeyoung Building
678-10 Deungchon-dong
Kandgseo-Ku, Seoul 157-030 KOREA
Tel: +82 (0)2 658 6835 Fax: +82 (0)2 3664 6839
http://www.proface.co.kr proface@proface.co.kr

Taiwan
Pro-face Taiwan Co., Ltd.
2F, No.69, Fushing North Road
Taipei 105 TAIWAN R. O. C.
Tel: +886 (0)2 2772 5208 Fax: +886 (0)2 8773 7892
http://www.proface.com.tw proface@proface.com.tw

North/South America
Pro-face America, Inc.
2190-E Gladstone Court
Glendale Heights, IL 60139 U.S.A.
Tel: +1 630 351 1101 Fax: +1 630 351 1102
http://www.profaceamerica.com
support@profaceamerica.com

European Head Office
Pro-face HMI B.V.
Amsteldijk 166
1079 LH Amsterdam THE NETHERLANDS
Tel: +31 (0)20 6464 134 Fax: +31(0)20 6464 358
http://www.proface.com support@proface.com

Italy
Pro-face HMI B.V. Italy
Via Carcano 44
20033 Desio (MI)
 ITALY
Tel: +39 0362 33 71 63 Fax: +39 0362 30 77 25
supporto_tecnico@proface.com

Germany
Pro-face Deutschland Gmbh
Albertus-Magnus-Strasße 11
42719 Solingen
GERMANY
Tel: +49 (0)212 258 260 Fax: +49 (0)212 258 2640
http://www.pro-face.de support@pro-face.de

	PS Series Type G Application Development Kit (ADK) Developer Manual
	Preface
	Documentation Conventions
	About Trademarks
	PS Series Type G Model Numbers
	CD-ROM Contents
	Usage Precautions

	Chapter 1 Development Environment
	1 Overview
	2 Hardware Environment
	3 Software Environment
	3.1 Development Software
	3.2 ADK Files

	4 Installing Application Development Tools
	5 Remote Connection Procedure
	5.1 Personal Computer Settings
	5.2 PS-G Unit Settings
	5.3 Connection

	Chapter 2 Application Development
	1 Development using eMbedded Visual C++
	1.1 Creating a Project
	1.2 Building and Downloading a Program
	1.3 Running a Program

	2 Development using eMbedded Visual Basic
	2.1 Creating a Project
	2.2 Downloading and Running a Program

	3 Debugging Programs Using the Emulator
	4 Auto Start

	Chapter 3 Library Interface Reference
	1 Backlight Driver
	1.1 Backlight Driver APIs
	1.2 Function Specifications

	2 SRAM Driver
	2.1 SRAM Driver APIs
	2.2 Function Specifications

	3 GMU-BUS Driver
	3.1 GMU-BUS Driver APIs
	3.2 Function Specifications

	4 RAS Driver
	4.1 RAS Driver APIs
	4.2 Details of Function Specifications
	4.3 Register Details

	5 Touch Panel Driver
	5.1 Touch Panel Driver APIs
	5.2 Function Specifications

	Index

