Temperature Controller Driver

1	System Configuration	3
2	Selection of External Device	11
3	Example of Communication Setting	12
4	Setup Items	104
5	Cable Diagram	109
6	Supported Device	173
7	Device Code and Address Code	242
8	Error Messages	248

Introduction

This manual describes how to connect the Display and the External Device (target PLC).

In this manual, the connection procedure will be described by following the below sections:

System Configuration
This section shows the types of External
Devices which can be connected and SIO
type.

"1 System Configuration" (page 3)

Selection of External Device
Select a model (series) of the External
Device to be connected and connection
method.

"2 Selection of External Device" (page 11)

3 Example of Communication Settings
This section shows setting examples for
communicating between the Display and
the External Device.

"3 Example of Communication Setting" (page 12)

4 Setup Items
This section describes communication setup items on the Display.
Set communication settings of the Display

with GP-Pro Ex or in off-line mode.

"4 Setup Items" (page 104)

Cable Diagram
This section shows cables and adapters for connecting the Display and the External Device.

"5 Cable Diagram" (page 109)

1 System Configuration

The system configuration in the case when the External Device of RKC INSTRUMENT INC. and the Display are connected is shown.

Series	CPU ^{*1}	Link I/F	SIO Type	Setting Example	Cable Diagram
СВ	CB100□□□□-□□*□□-5□/□ CB400□□□□-□□*□□-5□/□ CB500□□□□-□□*□□-5□/□ CB700□□□□-□□*□□-5□/□ CB900□□□□-□□*□□-5□/□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 1 (page 12)	Cable Diagram 1 (page 109)
	FB900-□□-□*□□□1/□□-□□□□ FB400-□□-□*□□□1/□□-□□□□	Terminal Block on the controller. (Communication 1)	RS232C	Setting Example 2 (page 14)	Cable Diagram 2 (page 114)
	FB900-□□-□*□□□4/□□-□□□□ FB400-□□-□*□□□4/□□-□□□□	Terminal Block on the controller. (Communication 1)	RS422/485 (4 wire)	Setting Example 3 (page 16)	Cable Diagram 10 (page 148)
	FB900-□□-□*□□□5/□□-□□□□ FB400-□□-□*□□□5/□□-□□□□	Terminal Block on the controller. (Communication 1)			
FB*2	FB900-□□-□*□□□Y/□□-□□□□ FB400-□□-□*□□□Y/□□-□□□□	Terminal Block on the controller. (Communication 2)	RS422/485 (2 wire)	Setting Example 4 (page 18)	Cable Diagram 1 (page 109)
	FB900-□□-□*□□□X/□□-□□□□ FB400-□□-□*□□□X/□□-□□□□	Terminal Block on the controller. (Communication 1)			
	FB900-□□-□*□□□W/□□-□□□□	Terminal Block on the controller. (Communication 1)	RS232C	Setting Example 2 (page 14)	Cable Diagram 2 (page 114)
FB400-□□-□*□□□W/□□-□□□□		Terminal Block on the controller. (Communication 2)	RS422/485 (2 wire)	Setting Example 4 (page 18)	Cable Diagram 1 (page 109)

Series	CPU ^{*1}	Link I/F	SIO Type	Setting Example	Cable Diagram
	HA900-□□-□-□*□-□1□-□/□/□ HA900-□□-□-□*□-□-□1□-□/□/□ HA901-□□-□-□*□-□-□1-□/□/□ HA400-□□-□-□*□-□-□1□-□/□/□ HA400-□□-□-□*□-□-□1-□/□/□ HA401-□□-□-□*□-□-□1-□/□/□ HA401-□□-□-□*□-□-□1-□/□/□ HA401-□□-□-□*□-□-□1-□/□/□ HA430-□□-□-□*□-□1-□/□	Terminal Block on the controller.	RS232C	Setting Example 5 (page 20)	Cable Diagram 2 (page 114)
HA*3	HA900-□□-□□-□*□□-□5□-□/□/□ HA900-□□-□□-□*□□-□5□-□/□/□ HA901-□□-□□-□*□-□□5-□/□/□ HA400-□□-□□-□*□-□□5-□/□/□ HA400-□□-□□-□*□-□□5-□/□/□ HA401-□□-□□-□*□-□□5-□/□/□ HA401-□□-□□-□*□□-□5-□/□/□ HA401-□□-□□-□*□□-□5-□/□/□ HA401-□□-□□-□*□□-□5-□/□/□ HA430-□□-□□-□*□□-□5-□/□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 6 (page 22)	Cable Diagram 1 (page 109)
	HA900-□□-□-□*□-□□4-□/□/□ HA901-□□-□-□*□-□□□4-□/□/□ HA400-□□-□-□*□-□□□4-□/□/□ HA401-□□-□-□*□-□□□4-□/□/□ HA930-□□-□-□*□-□4-□/□ HA430-□□-□-□*□□-□4-□/□	Terminal Block on the controller.	RS422/485 (4 wire) *4	Setting Example 7 (page 24)	Cable Diagram 10 (page 148)
	MA900-4□□□□-□-□*□□□-□5/□ MA901-8□□□□-□-□*□□□-□5/□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 8 (page 26)	Cable Diagram 1 (page 109)
MA900 *3 *5	MA900-4□□□□-□-□*□□□-□4/□ MA901-8□□□□-□-□*□□□-□4/□	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 9 (page 28)	Cable Diagram 10 (page 148)
	MA900-4□□□□-□-□*□□□-□1/□ MA901-8□□□□-□-□*□□□-□1/□	Terminal Block on the controller.	RS232C	Setting Example 10 (page 30)	Cable Diagram 2 (page 114)
SRV	V-TIO-A-□□□□-□□-□-□-□ V-TIO-C-□□□□-□□*□□□-□-□-□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 14 (page 38)	Cable Diagram 1 (page 109)
SRX	X-TIO-A-□□-□□*□□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 15 (page 40)	Cable Diagram 1 (page 109)
SA100	SA100□□□□-□*□□-5□/□□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 16 (page 42)	Cable Diagram 1 (page 109)
SA200	SA200□□□□-□□-□*□□-5□/□/□□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 17 (page 44)	Cable Diagram 1 (page 109)

Series	CPU ^{*1}	Link I/F	SIO Type	Setting Example	Cable Diagram
SR Mini HG	H-PCP-□-□1N-□*□□	Modular connector 1 on the controller.	RS232C	Setting Example 38 (page 86)	Cable Diagram 11 (page 152)
(H-PCP- A/B)	H-PCP-□-□4N-□*□□	Modular connector on the controller.	RS422/485 (4 wire)	Setting Example 39 (page 88)	Cable Diagram 8 (page 140)
	H-PCP-J-□4□-D*□□	COM.PORT1 and COM.PORT2 on	RS422/485 (4 wire)	Setting Example 20 (page 50)	Cable Diagram 4 (page 118)
	H-PCP-J-□5□-D*□□	the controller.	RS422/485 (2 wire)	Setting Example 21 (page 52)	Cable Diagram 5 (page 122)
SR Mini HG (H-PCP- J)	H-PCP-J-□□1-D*□□		RS232C	Setting Example 22 (page 54)	Cable Diagram 12 (page 153)
ŕ	H-PCP-J-□□4-D*□□	COM.PORT3 on the controller.	RS422/485 (4 wire)	Setting Example 20 (page 50)	Cable Diagram 6 (page 129)
	H-PCP-J-□□5-D*□□		RS422/485 (2 wire)	Setting Example 21 (page 52)	Cable Diagram 7 (page 133)
REX- F9000	F9000-□□□-□*□□/□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 13 (page 36)	Cable Diagram 1 (page 109)
	F400□□□-□□*□□-□□□-1□ F700□□□-□□*□□-□□□-1□ F900□□□-□□*□□-□□□-1□	Terminal Block on the controller.	RS232C	Setting Example 23 (page 56)	Cable Diagram 2 (page 114)
REX-F	F400□□□-□□*□□-□□-4□ F700□□□-□□*□□-□□-4□ F900□□□-□□*□□-□□-4□	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 24 (page 58)	Cable Diagram 10 (page 148)
	F400□□□-□□*□□-5□ F700□□□-□□*□□-5□ F900□□□-□□*□□-5□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 25 (page 60)	Cable Diagram 1 (page 109)
	D400□-□*□□-□-4 D700□-□*□□-□-4 D900□-□*□□-□-4	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 18 (page 46)	Cable Diagram 3 (page 115)
REX-D	D100□-□□*□□-□-5□ D400□-□*□□-□-5 D700□-□*□□-□-5 D900□-□*□□-□-5	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 19 (page 48)	Cable Diagram 1 (page 109)

Series	CPU ^{*1}	Link I/F	SIO Type	Setting Example	Cable Diagram
	G9□□□-□*□□□-□□-1/A	Terminal Block on the controller.	RS232C	Setting Example 26 (page 62)	Cable Diagram 2 (page 114)
REX-G9	G9□□□-□*□□□-□□-4/A	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 27 (page 64)	Cable Diagram 10 (page 148)
	G9□□□-□*□□□-□□-2/A	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 28 (page 66)	Cable Diagram 9 (page 143)
	P300□□□-□□-□*D-□□□□-1	Terminal Block on the controller.	RS232C	Setting Example 29 (page 68)	Cable Diagram 2 (page 114)
REX- P300	P300□□□-□□-□*D-□□□□-4	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 30 (page 70)	Cable Diagram 3 (page 115)
	P300□□□-□□-□*D-□□□□-5	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 31 (page 72)	Cable Diagram 1 (page 109)
REX-	P250□□□-□*□-1	Terminal Block on the controller.	RS232C	Setting Example 32 (page 74)	Cable Diagram 2 (page 114)
P250	P250□□□-□*□-□-2	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 33 (page 76)	Cable Diagram 9 (page 143)
REX-AD	AD410□-□*□-□-4/CE	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 34 (page 78)	Cable Diagram 3 (page 115)
KEA-AD	AD410□-□*□-□-5/CE	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 35 (page 80)	Cable Diagram 1 (page 109)
REX-PG	PG410□□*□□-□4	Terminal Block on the controller.	RS422/485 (4 wire)	Setting Example 36 (page 82)	Cable Diagram 3 (page 115)
REA-FU	PG410□□*□□-□5	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 37 (page 84)	Cable Diagram 1 (page 109)
AE500	AE500□□□-□*□□□□-5□/□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 11 (page 32)	Cable Diagram 1 (page 109)
LE100	LE100-□□*□5□□-□□	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 12 (page 34)	Cable Diagram 1 (page 109)

Series	CPU ^{*1}	Link I/F	SIO Type	Setting Example	Cable Diagram
SRZ (Z-TIO)	Z-TIO-AD-DDDD/DD-DDDD Z-TIO-BD-DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 40 (page 90)	Cable Diagram 13 (page 154)
SRZ (Z-DIO)	Z-DIO-A□-□□/□-□□□□□□□□□□□□□□ N	Terminal Block on the controller.		Setting Example 41 (page 92)	Cable Diagram 13 (page 154)
SRZ (Z-CT)	Z-CT-A□/□-□□ Z-CT-A□/N	Terminal Block on the controller.	RS422/485 (2 wire)	Setting Example 42 (page 94)	Cable Diagram 13 (page 154)
	Z-COM-A-4□/□□□□ Z-COM-A-4□/N	COM.PORT1	RS422/485 (4 wire)	Setting Example 43 (page 96)	Cable Diagram 14 (page 161)
SRZ	Z-COM-A-5□/□□□□ Z-COM-A-5□/N	on the controller.	RS422/485 (2 wire)	Setting Example 44 (page 98)	Cable Diagram 15 (page 166)
(Z-COM)	Z-COM-A-□4/□□□□ Z-COM-A-□4/N	COM.PORT3 COM.PORT4	RS422/485 (4 wire)	Setting Example 45 (page 100)	Cable Diagram 14 (page 161)
	Z-COM-A-□5/□□□□ Z-COM-A-□5/N	on the controller	RS422/485 (2wire)	Setting Example 46 (page 102)	Cable Diagram 15 (page 166)

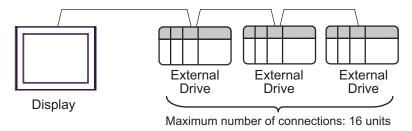
^{*1} The mode data " \square " will vary depending on the type of option.

^{*2} There are two communication port: Communication 1 and Communication 2.

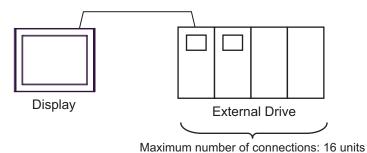
Communication 1 is used for host communication. Communication 2 is used for intercontroller communication, but can be also used for host communication. When Communication 2 is used for host communication, it is necessary to change the protocol of Communication 2 (RKC communication is set).

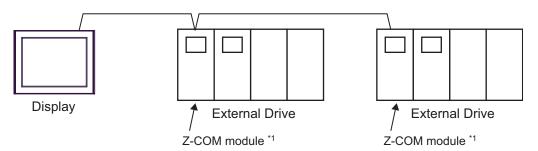
^{*3} No memory area number is specified, "Control area" is used as default.

^{*4} Only Communication 2 supports RS-422 connection.


^{*5} Only support Single mode, Multi-point mode hasn't been supported.

■ Connection Configuration


• 1:1 Connection


• 1:n Connection

• 1:n Connection (For the SRZ (Z-TIO), SRZ (Z-DIO), and SRZ (Z-CT) Series)

1:n Connection (For the SRZ (Z-COM) Series)

^{*1} Up to 16 Z-COM modules can be connected.

■ IPC COM Port

When connecting IPC with an External Device, the COM port used depends on the series and SIO type. Please refer to the IPC manual for details.

Usable port

	Usable Port				
Series	Coubie I oit				
Conco	RS-232C	RS-422/485(4 wire)	RS-422/485(2 wire)		
PS-2000B	COM1 ^{*1} , COM2, COM3 ^{*1} , COM4	-	-		
PS-3450A, PS-3451A, PS3000-BA, PS3001-BD	COM1, COM2*1*2	COM2*1*2	COM2*1*2		
PS-3650A, PS-3651A	COM1*1	-	-		
PS-3700A (Pentium®4-M) PS-3710A	COM1*1, COM2*1, COM3*2, COM4	COM3*2	COM3*2		
PS-3711A	COM1*1, COM2*2	COM2*2	COM2*2		
PL-3000B, PL-3600T, PL-3600K, PL-3700T, PL-3700K, PL-3900T	COM1*1*2, COM2*1, COM3, COM4	COM1*1*2	COM1*1*2		

^{*1} The RI/5V can be switched. Use the IPC's switch to change if necessary.

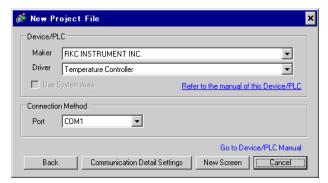
DIP switch setting: RS-232C

DIP switch	Setting	Description	
1	OFF*1	Reserved (always OFF)	
2	OFF	SIO type: RS-232C	
3	OFF	310 type. R3-232e	
4	OFF	Output mode of SD (TXD) data: Always output	
5	OFF	Terminal resistance (220Ω) insertion to SD (TXD): None	
6	OFF	Terminal resistance (220Ω) insertion to RD (RXD): None	
7	OFF	Short-circuit of SDA (TXA) and RDA (RXA): Not available	
8	OFF	Short-circuit of SDB (TXB) and RDB (RXB): Not available	
9	OFF	RS (RTS) Auto control mode: Disabled	
10	OFF		

^{*1} When using PS-3450A, PS-3451A, PS3000-BA and PS3001-BD, turn ON the set value.

^{*2} Set up the SIO type with the DIP switch. Please set up as follows according to SIO type to be used.

DIP switch setting: RS-422/485 (4 wire)


DIP switch	Setting	Description	
1	OFF	Reserved (always OFF)	
2	ON	SIO type: RS-422/485	
3	ON	510 type. R5-422/465	
4	OFF	Output mode of SD (TXD) data: Always output	
5	OFF	Terminal resistance (220Ω) insertion to SD (TXD): None	
6	OFF	Terminal resistance (220Ω) insertion to RD (RXD): None	
7	OFF	Short-circuit of SDA (TXA) and RDA (RXA): Not available	
8	OFF	Short-circuit of SDB (TXB) and RDB (RXB): Not available	
9	OFF	RS (RTS) Auto control mode: Disabled	
10	OFF		

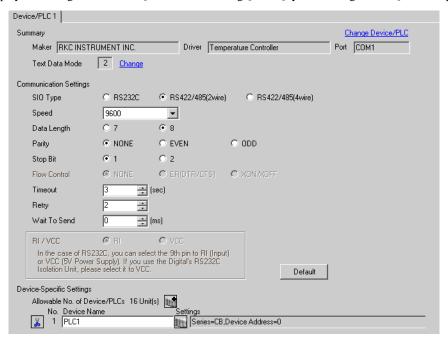
DIP switch setting: RS-422/485 (2 wire)

DIP switch	Setting	Description	
1	OFF	Reserved (always OFF)	
2	ON	SIO type: RS-422/485	
3	ON	510 type. R5-422/465	
4	OFF	Output mode of SD (TXD) data: Always output	
5	OFF	Terminal resistance (220Ω) insertion to SD (TXD): None	
6	OFF	Terminal resistance (220Ω) insertion to RD (RXD): None	
7	ON	Short-circuit of SDA (TXA) and RDA (RXA): Available	
8	ON	Short-circuit of SDB (TXB) and RDB (RXB): Available	
9	ON	RS (RTS) Auto control mode: Enabled	
10	ON		

2 Selection of External Device

Select the External Device to be connected to the Display.

Setup Items	Setup Description
Maker	Select the maker of the External Device to be connected. Select "RKC INSTRUMENT INC.".
Driver	Select a model (series) of the External Device to be connected and connection method. Select "Temperature Controller". Check the External Device which can be connected in "Temperature Controller" in system configuration. "I System Configuration" (page 3)
Use System Area	Not use at this driver.
Port	Select the Display port to be connected to the External Device.


3 Example of Communication Setting

Examples of communication settings of the Display and the External Device, recommended by Pro-face, are shown.

3.1 Setting Example 1

- Settings of GP-Pro EX
- ◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

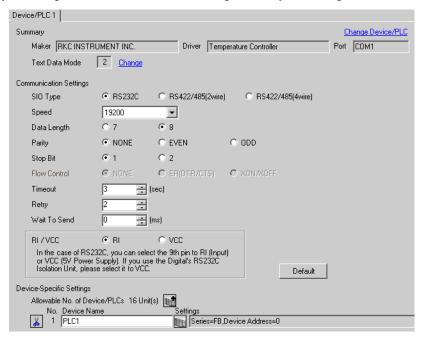
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key to change from PV/SV display mode to communication setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- While depressing the SET key, press Shift key to change from communication setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	2
bIT	0


NOTE

3.2 Setting Example 2

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

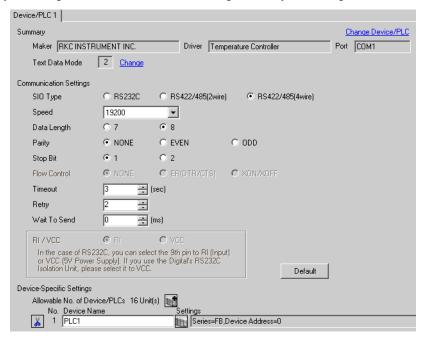
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key and hold until display mode changes from PV/SV display mode to engineering mode.
- 2. Press the Up key several times to set the F60, and press the SET key.
- 3. Set 0 (zero) to CMP1.
- 4. While depressing the SET key, press the Shift key to change from engineering mode to PV/SV display mode.
- 5. While depressing the SET key, press the Shift key to change from PV/SV display mode to setup setting mode.
- 6. Press the SET key several times to select the parameter.
- 7. Press Up/Down keys to change the setting.
- 8. While depressing the SET key, press the Shift key to change from setup setting mode to PV/SV display mode.
- 9. Turn off power of the temperature controller and turn on again to set the setting.

◆ Setting value

Add1	0
bPS1	19.2
bIT1	8n1



3.3 Setting Example 3

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

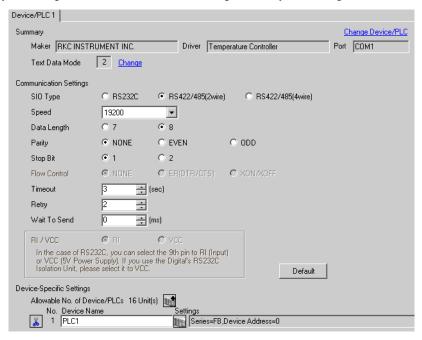
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key and hold until display mode changes from PV/SV display mode to engineering mode.
- 2. Press the Up key several times to set the F60, and press the SET key.
- 3. Set 0 (zero) to CMP1.
- 4. While depressing the SET key, press the Shift key to change from engineering mode to PV/SV display mode.
- 5. While depressing the SET key, press the Shift key to change from PV/SV display mode to setup setting mode.
- 6. Press the SET key several times to select the parameter.
- 7. Press Up/Down keys to change the setting.
- 8. While depressing the SET key, press the Shift key to change from setup setting mode to PV/SV display mode.
- 9. Turn off power of the temperature controller and turn on again to set the setting.

◆ Setting value

Add1	0
bPS1	19.2
bIT1	8n1


NOTE

3.4 Setting Example 4

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

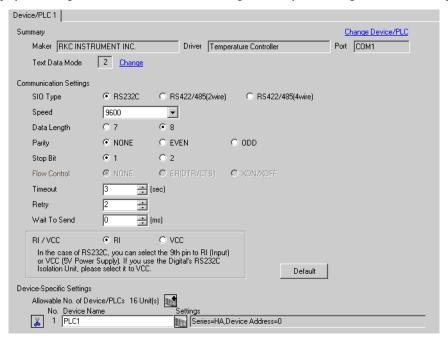
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key and hold until display mode changes from PV/SV display mode to engineering mode.
- 2. Press the Up key several times to set the F60, and press the SET key.
- 3. Set 0 (zero) to CMP1.
- 4. While depressing the SET key, press the Shift key to change from engineering mode to PV/SV display mode.
- 5. While depressing the SET key, press the Shift key to change from PV/SV display mode to setup setting mode.
- 6. Press the SET key several times to select the parameter.
- 7. Press Up/Down keys to change the setting.
- 8. While depressing the SET key, press the Shift key to change from setup setting mode to PV/SV display mode.
- 9. Turn off power of the temperature controller and turn on again to set the setting.

◆ Setting value

Add1	0
bPS1	19.2
bIT1	8n1


NOTE

3.5 Setting Example 5

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

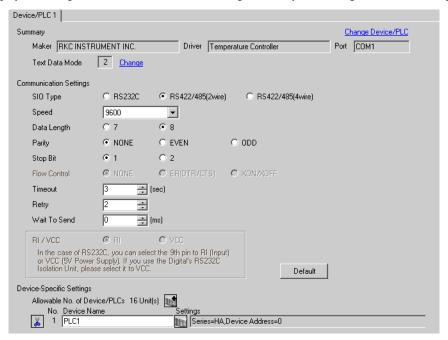
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. While depressing the SET key, press the Shift key to change from SV setting & monitor mode to setup setting mode
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- 4. While depressing the SET key, press Shift key to change from setup setting mode to SV setting & monitor mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add1	0
bPS1	9.6
bIT1	8n1


NOTE

3.6 Setting Example 6

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

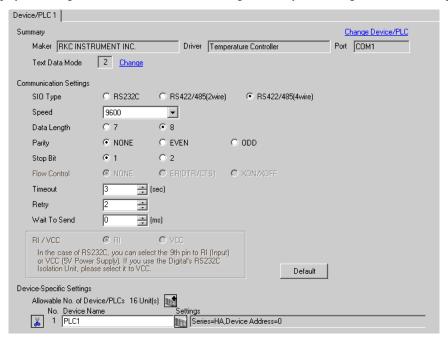
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key to change from SV setting & monitor mode to setup setting mode
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- 4. While depressing the SET key, press Shift key to change from setup setting mode to SV setting & monitor mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add1	0
bPS1	9.6
bIT1	8n1


NOTE

3.7 Setting Example 7

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

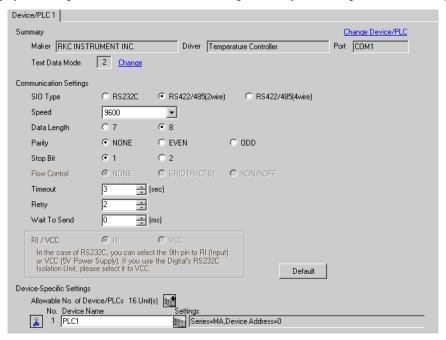
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. While depressing the SET key, press the Shift key to change from SV setting & monitor mode to setup setting mode
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- 4. While depressing the SET key, press Shift key to change from setup setting mode to SV setting & monitor mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

Setting value

Add1	0
bPS1	9.6
bIT1	8n1


NOTE

3.8 Setting Example 8

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

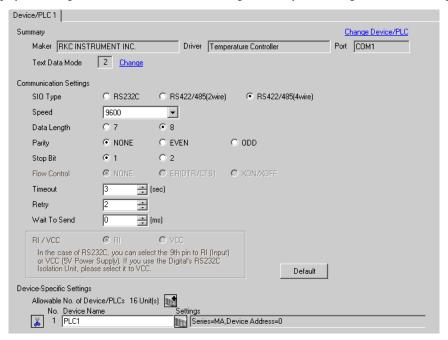
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. While depressing the SET key, press the <R/S key to change from PV/SV display mode to setup setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys and <R/S key to change the setting.
- 4. While depressing the SET key, press <R/S key to change from setup setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	960
bIT	8n1



3.9 Setting Example 9

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

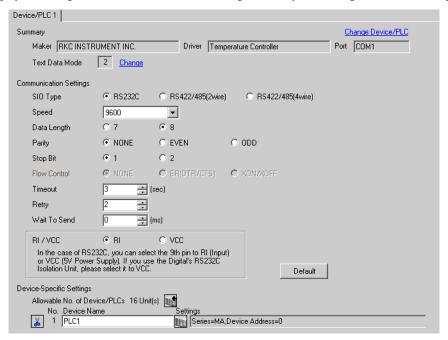
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. While depressing the SET key, press the <R/S key to change from PV/SV display mode to setup setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys and <R/S key to change the setting.
- 4. While depressing the SET key, press <R/S key to change from setup setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	960
bIT	8n1



3.10 Setting Example 10

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

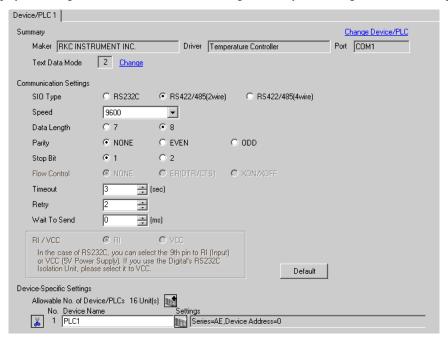
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. While depressing the SET key, press the <R/S key to change from PV/SV display mode to setup setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys and <R/S key to change the setting.
- 4. While depressing the SET key, press <R/S key to change from setup setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	960
bIT	8n1



3.11 Setting Example 11

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

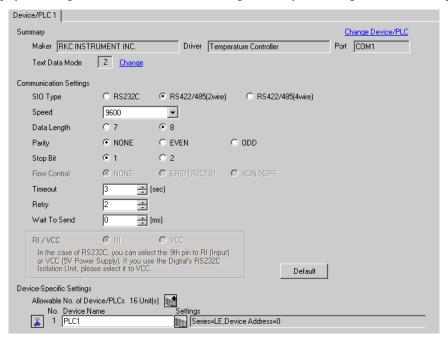
 While depressing the Shift key, press the SET key to change from PV display mode to communication setting mode

Device address of setting item is displayed.

- Press the SET key to display the communication item to be set.Every time the SET key is depressed, setting item switches.
- 3. Press the Shift key to move to the value setting display. Press the Up/Down keys and input the setting value.
- 4. Press the SET key to register the input value.
- 5. While depressing the Shift key, press the SET key to change from communication setting mode to PV display mode.

◆ Setting value

Add	0
bPS	2
bIT	0


NOTE

3.12 Setting Example 12

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

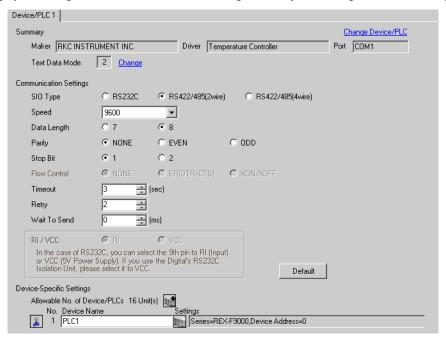
 While depressing the Down key, press the SET key to change from PV display mode to device configuration setting mode.

Communication parameter group is displayed.

- 2. Press the UP/Down keys to display the communication parameter group "PG10".
- 3. Press the SET key to display the communication item to be set. Every time the SET key is depressed, setting item switches.
- 4. Press the UP/Down keys and set the communication setting.
- 5. Turn off power of the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	2
bIT	0


NOTE

3.13 Setting Example 13

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

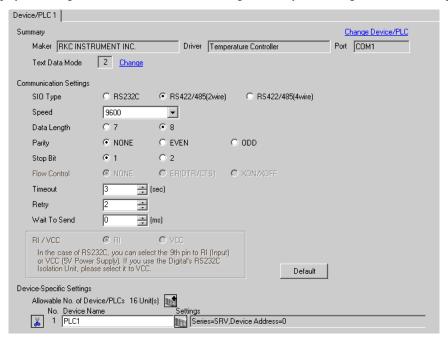
Please refer to the temperature controller manual for details.

◆ Procedure

- 1. Set the external device to operation STOP status.
 - Press the MODE key to display "Operation execution (RUN) /STOP transfer," and press the Down key to set the mode to STOP.
- 2. Press the SET key to change from SV setting mode to operator setting mode.
- 3. Depress the SET key for 5 seconds or more to change from operator setting mode to setup mode.
- 4. Press the Up key to display PG24.
- Every time the SET key is depressed, setting item switches.Display the item to be set, and select set contents with the Up/Down keys or the Shift key.
- 6. Press the SET key to set the set contents.
- 7. Press the MODE key to display "Operation execution (RUN)/STOP transfer," and press the Up key to set the mode to RUN.

◆ Setting value

Add	0
bPS	3
bIT	0
CMPS	0



3.14 Setting Example 14

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the rotary switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

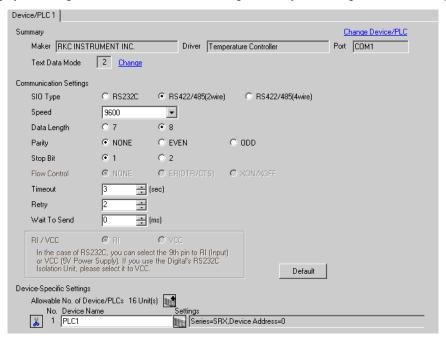
- 1. Set module address with the rotary switch on the front face of the temperature controller.
- 2. Set communication speed and data bit construction with the dip switch on the side of the temperature controller.

◆ Setting value

Rotary switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Description
SW1	ON	Communication speed
SW2	OFF	Communication speed
SW3	ON	
SW4	OFF	Data bit construction
SW5	OFF	
SW6	OFF	Protocol construction
SW7	OFF	Fixed
SW8	OFF	1 ixed

3.15 Setting Example 15

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the rotary switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

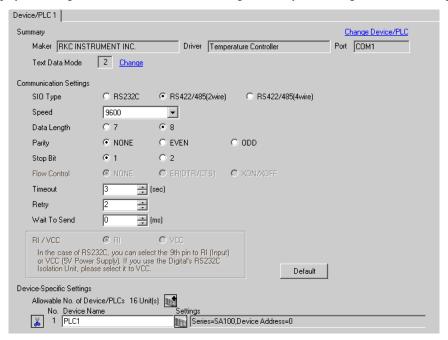
- 1. Set module address with the rotary switch on the front face of the temperature controller.
- 2. Set communication speed and data bit construction with the dip switch on the side of the temperature controller.

◆ Setting value

Rotary switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Description
SW1	ON	
SW2	OFF	Communication speed
SW3	ON	
SW4	OFF	Data bit construction
SW5	OFF	
SW6	OFF	Protocol construction
SW7	OFF	Fixed
SW8	OFF	

3.16 Setting Example 16

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

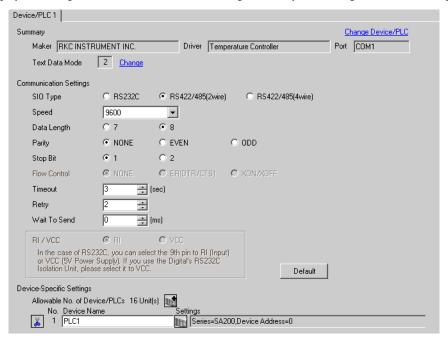
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key to change from PV/SV display mode to communication setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- While depressing the SET key, press Shift key to change from communication setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	960
bIT	8n1


NOTE

3.17 Setting Example 17

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, Shift, UP and Down keys located on the front face of the temperature controller.

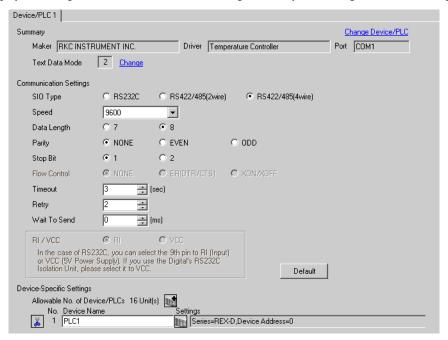
Please refer to the temperature controller manual for details.

◆ Procedure

- While depressing the SET key, press the Shift key to change from PV/SV display mode to communication setting mode.
- 2. Press the SET key and select parameters.
- 3. Press UP/Down keys to change the setting.
- While depressing the SET key, press Shift key to change from communication setting mode to PV/SV display mode.
- 5. Turn off power to the temperature controller and turn on again to set the setting.

◆ Setting value

Add	0
bPS	960
bIT	8n1


NOTE

3.18 Setting Example 18

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MONI/MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG8."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to select the setting value, and press the SEL key.
- 5. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 7. Press the SEL key several times to display Add.
- 8. Press the Up/Down keys to input set value, and press the SEL key to set the input value.
- 9. Press the Monitor/Mode keys to switch to the PV display mode.
- 10. Turn off power of external device off, and turn it on again.

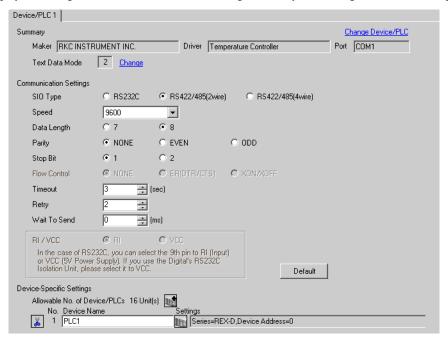
◆ Setting value

Engineer setting mode

bPS	3
bIT	0

SETUP setting mode

OE FOR COLLING MICCO	
Add	0



3.19 Setting Example 19

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MONI/MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG8."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to select the setting value, and press the SEL key.
- 5. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 7. Press the SEL key several times to display Add.
- 8. Press the Up/Down keys to input set value, and press the SEL key to set the input value.
- 9. Press the Monitor/Mode keys to switch to the PV display mode.
- 10. Turn off power of external device off, and turn it on again.

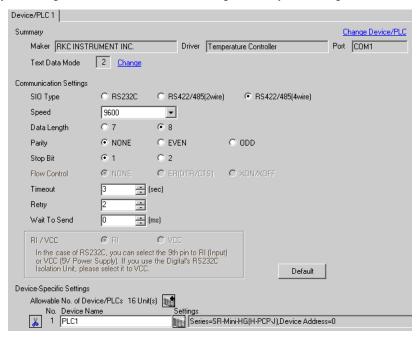
◆ Setting value

Engineer setting mode

•	•	
	bPS	3
	bIT	0

SETUP setting mode

Add	0



3.20 Setting Example 20

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the rotary switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

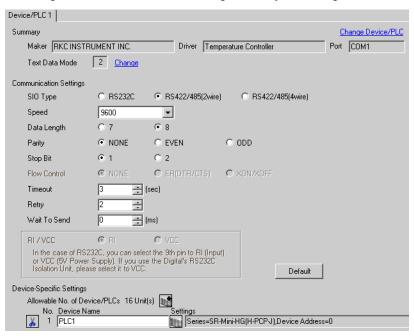
- 1. Unit address is set with the rotary switch on the front face of the temperature controller.
- 2. Remove the temperature controller from the mother block, and set the communication speed and data construction with the dip switch in the temperature controller.

◆ Setting value

Rotary switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Description
SW1	OFF	Data construction
SW2	OFF	Data construction
SW3	ON	Communication speed
SW4	OFF	Communication speed

3.21 Setting Example 21

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the rotary switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

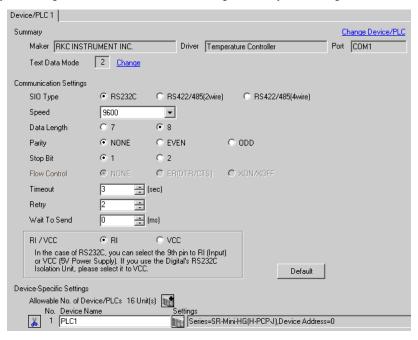
- 1. Unit address is set with the rotary switch on the front face of the temperature controller.
- 2. Remove the temperature controller from the mother block, and set the communication speed and data construction with the dip switch in the temperature controller.

◆ Setting value

Rotary switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Description
SW1	OFF	Data construction
SW2	OFF	Data construction
SW3	ON	Communication speed
SW4	OFF	Communication speed

3.22 Setting Example 22

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the rotary switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

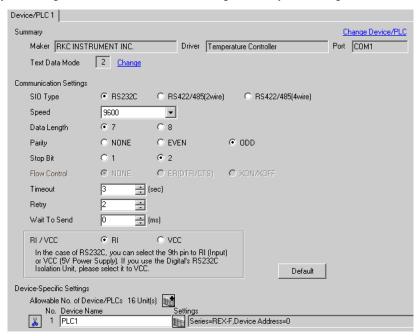
- 1. Unit address is set with the rotary switch on the front face of the temperature controller.
- 2. Remove the temperature controller from the mother block, and set the communication speed and data construction with the dip switch in the temperature controller.

◆ Setting value

Rotary switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Description
SW1	OFF	Data construction
SW2	OFF	Data construction
SW3	ON	Communication speed
SW4	OFF	Communication speed

3.23 Setting Example 23

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

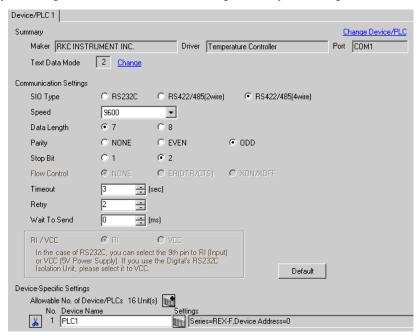
Please refer to the temperature controller manual for details.

◆ Procedure

- Set the external device to the operation STOP status.
 Press the MODE key several times to display "Operation execution (RUN) /STOP transfer," and press the Down key to set the mode to STOP.
- 2. Press the SET key to call up the set operator level 1.
- 3. Depress the SET key for 5 seconds or more to call up the set operator level 2.
- 4. Depress the SET key for 5 seconds or more to call up the engineer level.
- 5. Press the Down key several times to display PG24.
- 6. Press the SET key to display the set contents. Every time the SET key is depressed, item to be set switches.
- 7. Input the set contents with the Up/Down key, and press the SET key.
- 8. Press the MODE key to display "Operation execution (RUN)/STOP transfer," and press the Up key to set the mode to RUN.

◆ Setting value

Add	0
bPS	3
bIT	11



3.24 Setting Example 24

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

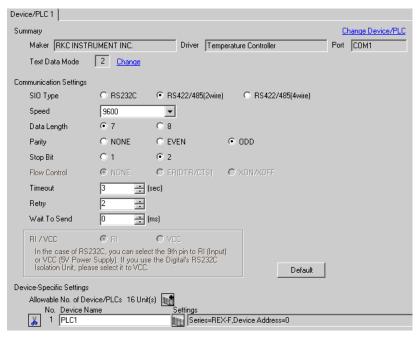
Please refer to the temperature controller manual for details.

◆ Procedure

- Set the external device to the operation STOP status.
 Press the MODE key several times to display "Operation execution (RUN) /STOP transfer," and press the Down key to set the mode to STOP.
- 2. Press the SET key to call up the set operator level 1.
- 3. Depress the SET key for 5 seconds or more to call up the set operator level 2.
- 4. Depress the SET key for 5 seconds or more to call up the engineer level.
- 5. Press the Down key several times to display PG24.
- 6. Press the SET key to display the set contents. Every time the SET key is depressed, item to be set switches.
- 7. Input the set contents with the Up/Down key, and press the SET key.
- 8. Press the MODE key to display "Operation execution (RUN)/STOP transfer," and press the Up key to set the mode to RUN.

◆ Setting value

Add	0
bPS	3
bIT	11



3.25 Setting Example 25

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

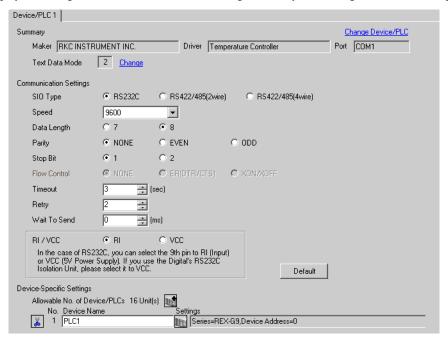
Please refer to the temperature controller manual for details.

◆ Procedure

- Set the external device to the operation STOP status.
 Press the MODE key several times to display "Operation execution (RUN) /STOP transfer," and press the Down key to set the mode to STOP.
- 2. Press the SET key to call up the set operator level 1.
- 3. Depress the SET key for 5 seconds or more to call up the set operator level 2.
- 4. Depress the SET key for 5 seconds or more to call up the engineer level.
- 5. Press the Down key several times to display PG24.
- 6. Press the SET key to display the set contents. Every time the SET key is depressed, item to be set switches.
- 7. Input the set contents with the Up/Down key, and press the SET key.
- 8. Press the MODE key to display "Operation execution (RUN)/STOP transfer," and press the Up key to set the mode to RUN.

◆ Setting value

Add	0
bPS	3
bIT	11



3.26 Setting Example 26

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the MODE, PARA, >>>, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

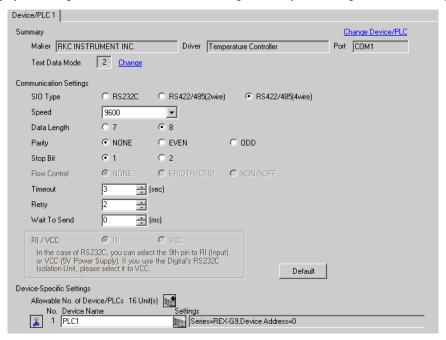
Press the >>> key to put the operation into action.

◆ Procedure

- Press the MODE key to display "Operation execution (RUN)/STOP transfer."
 Press the >>> key to stop operation.
- Press PARA key to display "Setting (PARA) screen."
 Press the Up/Down keys, select PARA GROUP 24, and press the PARA key.
- 3. Every time the PARA Key is depressed, setting item switches.
 Display the item to be set, and select the set contents with the Up/Down keys.
 4. After setting, press the MODE key to display "Operation execution (RUN)/STOP screen."

◆ Setting value

Bit Format	P (Parity): n DT (Data Bit): 8 SP (Stop bit): 1
Device Address	0
Speed	9600



3.27 Setting Example 27

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the MODE, PARA, >>>, UP and Down keys located on the front face of the temperature controller.

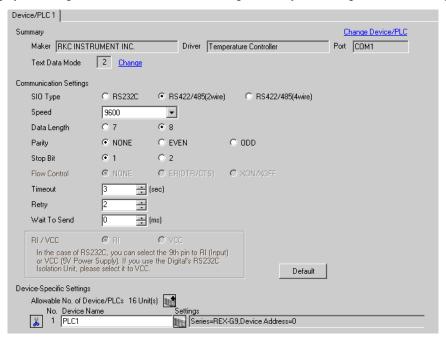
Please refer to the temperature controller manual for details.

◆ Procedure

- Press the MODE key to display "Operation execution (RUN)/STOP transfer."
 Press the >>> key to stop operation.
- Press PARA key to display "Setting (PARA) screen."
 Press the Up/Down keys, select PARA GROUP 24, and press the PARA key.
- 3. Every time the PARA Key is depressed, setting item switches.
 Display the item to be set, and select the set contents with the Up/Down keys.
 4. After setting, press the MODE key to display "Operation execution (RUN)/STOP screen."
- 4. After setting, press the MODE key to display "Operation execution (RUN)/STOP screen." Press the >>> key to put the operation into action.

◆ Setting value

Bit Format	P (Parity): n DT (Data Bit): 8 SP (Stop bit): 1
Device Address	0
Speed	9600



3.28 Setting Example 28

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the MODE, PARA, >>>, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

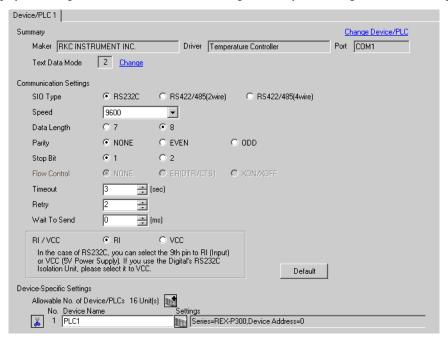
Press the >>> key to put the operation into action.

◆ Procedure

- Press the MODE key to display "Operation execution (RUN)/STOP transfer."
 Press the >>> key to stop operation.
- Press PARA key to display "Setting (PARA) screen."
 Press the Up/Down keys, select PARA GROUP 24, and press the PARA key.
- Every time the PARA Key is depressed, setting item switches.
 Display the item to be set, and select the set contents with the Up/Down keys.
 After setting, press the MODE key to display "Operation execution (RUN)/STOP screen."

◆ Setting value

Bit Format	P (Parity): n DT (Data Bit): 8 SP (Stop bit): 1
Device Address	0
Speed	9600



3.29 Setting Example 29

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Press the SET key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG60."
- 3. Press the SET Key to display setting item. Every time the SET Key is depressed, item to be set switches.
- 4. Press the Up/Down keys to select set value, and press the SET Key.
- 5. Press the Reset key to reset the external device.
- 6. Press the Monitor/Mode key and the SET key at the same time to move to SETUP setting mode.
- 7. Press the SET key several times to display Add.
- 8. Press the Up/Down keys to select set value, and press the SET key.
- 9. Press the RUN/HOLD key to move to operation monitor mode.

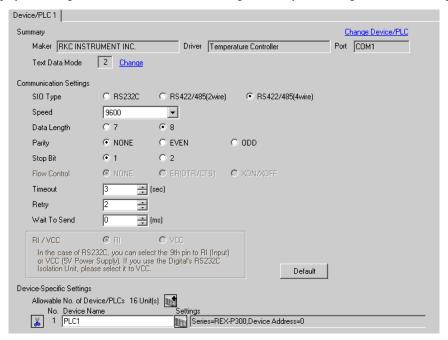
◆ Setting value

Engineer setting mode

bPS	2
bIT	0

SETUP setting mode

Add	0



3.30 Setting Example 30

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Press the SET key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG60."
- 3. Press the SET Key to display setting item. Every time the SET Key is depressed, item to be set switches.
- 4. Press the Up/Down keys to select set value, and press the SET Key.
- 5. Press the Reset key to reset the external device.
- 6. Press the Monitor/Mode key and the SET key at the same time to move to SETUP setting mode.
- 7. Press the SET key several times to display Add.
- 8. Press the Up/Down keys to select set value, and press the SET key.
- 9. Press the RUN/HOLD key to move to operation monitor mode.

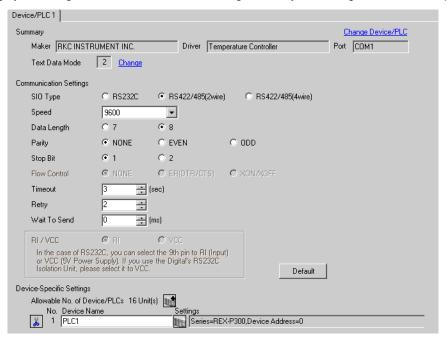
◆ Setting value

Engineer setting mode

•	
bPS	2
bIT	0

SETUP setting mode

Add	0



3.31 Setting Example 31

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

Communication setting of the external device is set with the SET, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Press the SET key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG60."
- 3. Press the SET Key to display setting item. Every time the SET Key is depressed, item to be set switches.
- 4. Press the Up/Down keys to select set value, and press the SET Key.
- 5. Press the Reset key to reset the external device.
- 6. Press the Monitor/Mode key and the SET key at the same time to move to SETUP setting mode.
- 7. Press the SET key several times to display Add.
- 8. Press the Up/Down keys to select set value, and press the SET key.
- 9. Press the RUN/HOLD key to move to operation monitor mode.

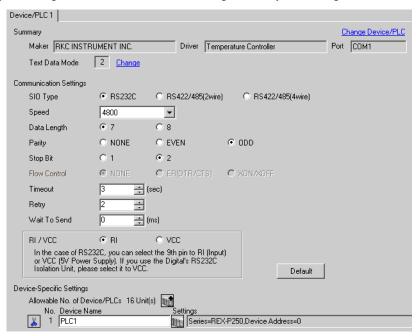
◆ Setting value

Engineer setting mode

bPS	2
bIT	0

SETUP setting mode

Add	0


 Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.32 Setting Example 32

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SET, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

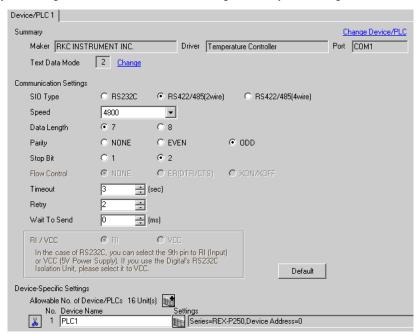
◆ Procedure

- While lifting up the stopper located at the lower section of the external device with a finger, pull and remove
 it from the case.
- 2. Turn on the internal switch A at upper external device and put it back in the case.
- 3. Press the SET key to display the item to be set, and select the set contents with the Up/Down keys. Stop bit, data bit, and parity bit are displayed in a 3 digit character string at the setting item, bIT, so touch each one's digit, ten's digit, and hundred's digit on the SV indicator, and select the set contents with the Up/Down keys.
- 4. Press the SET key to set the set contents.
- 5. Remove the external device form the case, turn OFF the internal switch A mentioned in 2 above, and return it to the case.

◆ Setting value

bPS	4800
bIT	o72
Add	0

NOTE


 Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.33 Setting Example 33

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SET, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

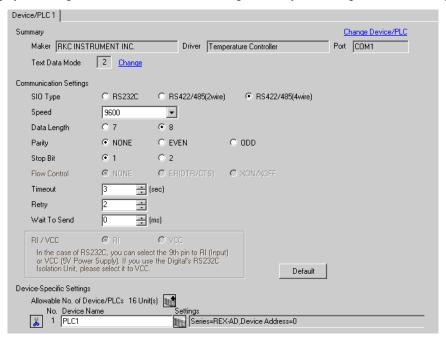
◆ Procedure

- While lifting up the stopper located at the lower section of the external device with a finger, pull and remove
 it from the case.
- 2. Turn on the internal switch A at upper external device and put it back in the case.
- 3. Press the SET key to display the item to be set, and select the set contents with the Up/Down keys. Stop bit, data bit, and parity bit are displayed in a 3 digit character string at the setting item, bIT, so touch each one's digit, ten's digit, and hundred's digit on the SV indicator, and select the set contents with the Up/Down keys.
- 4. Press the SET key to set the set contents.
- 5. Remove the external device form the case, turn OFF the internal switch A mentioned in 2 above, and return it to the case.

◆ Setting value

bPS	4800
bIT	o72
Add	0

NOTE


 Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.34 Setting Example 34

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG9."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to display the setting value.
- 5. Press the Up/Down keys to select the setting value, and press the SEL key.
- 6. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 8. Press the SEL key several times to display Add.
- 9. Press the Up/Down keys to display the setting value.
- 10. Press the Up/Down keys to display the setting value.
- 11. Press the Monitor/Mode keys to switch to the PV display mode.

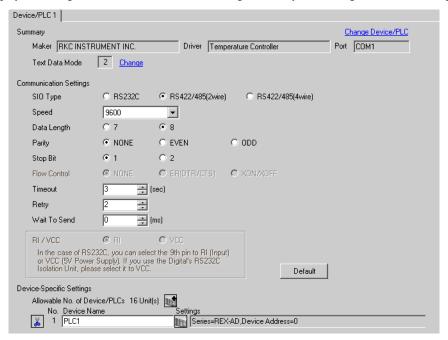
◆ Setting value

Engineer setting mode

0	
bPS	3
bIT	0

SETUP setting mode

•	
Add	0


Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.35 Setting Example 35

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG9."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to display the setting value.
- 5. Press the Up/Down keys to select the setting value, and press the SEL key.
- 6. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 8. Press the SEL key several times to display Add.
- 9. Press the Up/Down keys to display the setting value.
- 10. Press the Up/Down keys to display the setting value.
- 11. Press the Monitor/Mode keys to switch to the PV display mode.

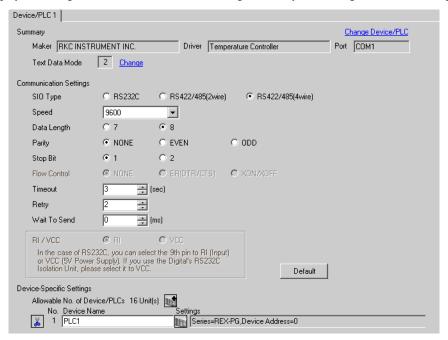
◆ Setting value

Engineer setting mode

J	J
bPS	3
bIT	0

SETUP setting mode

•	
Add	0


Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.36 Setting Example 36

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG6."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to display the setting value.
- 5. Press the Up/Down keys to select the setting value, and press the SEL key.
- 6. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 8. Press the SEL key several times to display Add.
- 9. Press the Up/Down keys to display the setting value.
- 10. Press the Up/Down keys to display the setting value.
- 11. Press the Monitor/Mode keys to switch to the PV display mode.

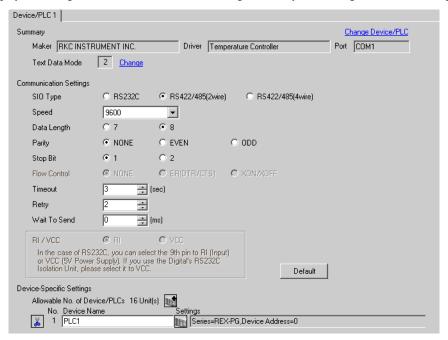
◆ Setting value

Engineer setting mode

•	•	
bP	S	3
bľ	Γ	0

SETUP setting mode

•	
Add	0


Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.37 Setting Example 37

■ Settings of GP-Pro EX

Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [fig. ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the SEL, MODE, UP and Down keys located on the front face of the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- Depress the SEL key for 2 seconds to change from PV display mode to engineer setting mode.
 Parameter group is displayed.
- 2. Press the Up/Down keys to display the parameter group, "PG9."
- 3. Press the SEL key to display the setting item. Every time the SEL key is depressed, setting item switches.
- 4. Press the Up/Down keys to display the setting value.
- 5. Press the Up/Down keys to select the setting value, and press the SEL key.
- 6. Press the Monitor/Mode key to switch to the PV display mode.
- Press the Monitor/Mode key and the SEL key at the same time to change from PV display mode to SETUP setting mode.
- 8. Press the SEL key several times to display Add.
- 9. Press the Up/Down keys to display the setting value.
- 10. Press the Up/Down keys to display the setting value.
- 11. Press the Monitor/Mode keys to switch to the PV display mode.

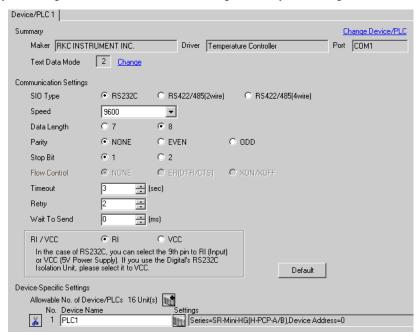
◆ Setting value

Engineer setting mode

0	
bPS	3
bIT	0

SETUP setting mode

•	
Add	0


Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.38 Setting Example 38

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [Mark ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the slave address setting switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

- 1. Set slave address for the host link with the slave address setting switch on the front face of the temperature controller.
- 2. Remove the temperature controller from the mother block and set communication speed and data construction with the dip switch in the temperature controller.

◆ Setting value

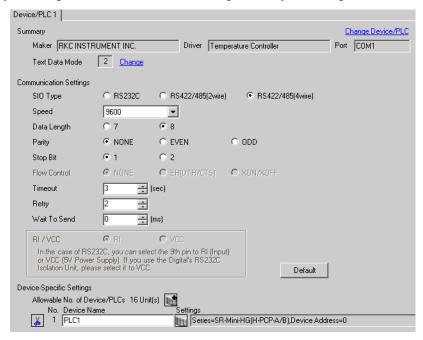
Slave address setting switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch

Dip switch	Setting	Discription
1	ON	Data construction
2	ON	Data construction
3	ON	Communication speed
4	OFF	Communication speed

NOTE


 Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.39 Setting Example 39

■ Settings of GP-Pro EX

◆ Communication Settings

To display the setting screen, select [Device/PLC Settings] from [System setting window] in workspace.

◆ Device Setting

To display the setting screen, click [Mark ([Setting]) of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

Communication setting of the external device is set with the slave address setting switch on the front face of the temperature controller and the dip switch in the temperature controller.

Please refer to the temperature controller manual for details.

◆ Procedure

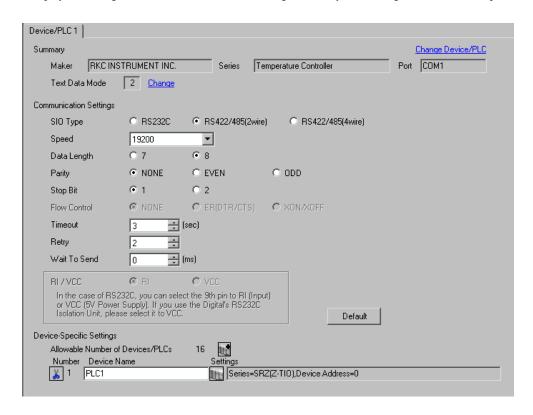
- 1. Set slave address for the host link with the slave address setting switch on the front face of the temperature controller.
- 2. Remove the temperature controller from the mother block and set communication speed and data construction with the dip switch in the temperature controller.

◆ Setting value

Slave address setting switch

Upper Digit Setting	0
Lower Digit Setting	0

Dip switch


Dip switch	Setting	Discription
1	ON	Data construction
2	ON	Data construction
3	ON	Communication speed
4	OFF	Communication speed

NOTE

 Parameters to be set differ per temperature controller. Please refer to the temperature controller manual for details.

3.40 Setting Example 40

- Settings of GP-Pro EX
- ◆ Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

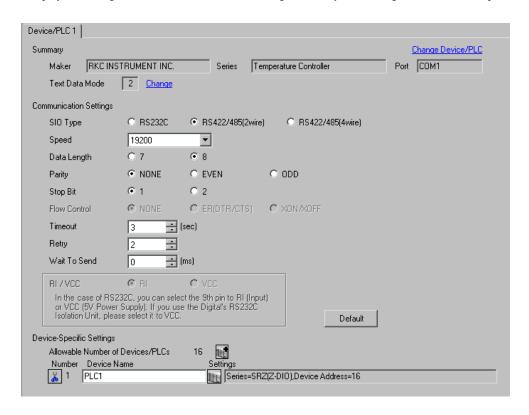
- 1. Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
- Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

0	
Slave address setting	0

DIP Switch


SW	Settings	Description
1	OFF	Speed: 19200 bps
2	ON	Speed. 17200 bps
3	OFF	Data bit configuration:
4	OFF	Data length 8 bits, no parity, stop 1 bit
5	ON	Dum lengur e ens, no party, stop 1 en
6	OFF	Communication protocol: RKC communication
7	OFF	Fixed
8	OFF	Fixed

NOTE

 Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.41 Setting Example 41

- Settings of GP-Pro EX
- ◆ Communication Settings

Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

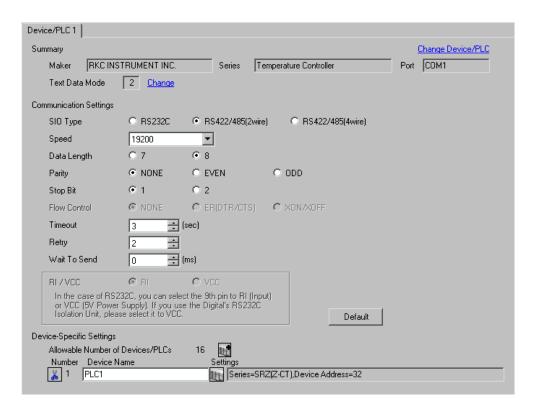
- Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
 The number added 16 to the set value becomes the slave address.
- 2. Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

Slave address setting	0

DIP Switch


SW	Settings	Description
1	OFF	Speed: 19200 bps
2	ON	Speed. 17200 bps
3	OFF	Data hit configuration.
4	OFF	Data bit configuration: Data length 8 bits, no parity, stop 1 bit
5	ON	Dam rengal o eas, no party, stop 1 etc
6	OFF	Communication protocol: RKC communication
7	OFF	Fixed
8	OFF	Fixed

NOTE

 Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.42 Setting Example 42

- Settings of GP-Pro EX
- ◆ Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

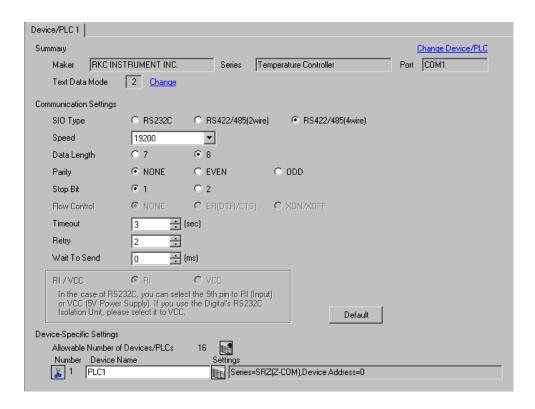
- Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
 The number added 32 to the set value becomes the slave address.
- 2. Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

Slave address setting	0

DIP Switch


SW	Settings	Description
1	OFF	Speed: 19200 bps
2	ON	Speed. 19200 bps
3	OFF	Data bit configuration:
4	OFF	Data length 8 bits, no parity, stop 1 bit
5	ON	Dun lengur e ens, ne panty, stop 1 en
6	OFF	Communication protocol: RKC communication
7	OFF	Fixed
8	OFF	Fixed

NOTE

 Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.43 Setting Example 43

- Settings of GP-Pro EX
- Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

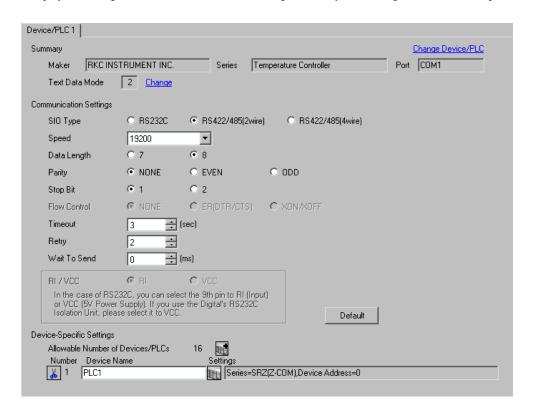
- 1. Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
- Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

Slave address setting	0
-----------------------	---

DIP Switch


SW	Settings	Description
1	OFF	Speed: 19200 bps
2	ON	Speed. 19200 ops
3	OFF	Communication protocol: Host communication (RKC communication) Data length 8 bits, no parity, stop 1 bit

 Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.44 Setting Example 44

- Settings of GP-Pro EX
- Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

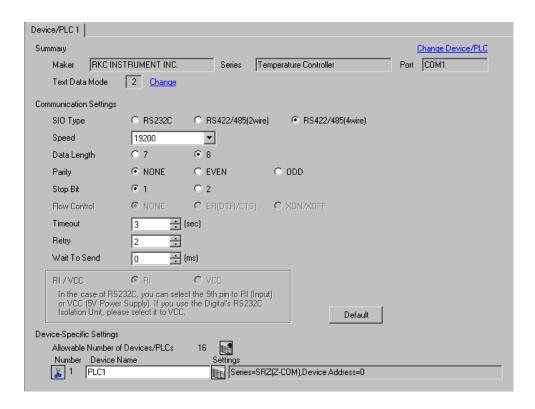
- 1. Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
- Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

Setting Value

Unit address setting switch

Slave address setting	0
-----------------------	---

DIP Switch


SW	Settings	Description
1	OFF	Speed: 19200 bps
2	ON	Speed. 17200 ops
3	OFF	Communication protocol: Host communication (RKC communication) Data length 8 bits, no parity, stop 1 bit

 Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.45 Setting Example 45

- Settings of GP-Pro EX
- Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

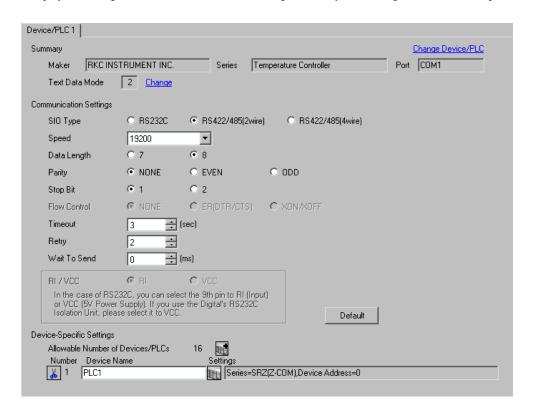
- 1. Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
- 2. Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

Slave address setting	0
-----------------------	---

DIP Switch


SW	Settings	Description
4	ON	Speed: 19200 bps
5	OFF	Communication must easily Heat communication (BVC communication)
6	OFF	Communication protocol: Host communication (RKC communication) Data length 8 bits, no parity, stop 1 bit
7	OFF	
8	OFF	DIP switch setting: Enabled

• Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

3.46 Setting Example 46

- Settings of GP-Pro EX
- Communication Settings

◆ Device Setting

To display the setting screen, click [[Setting]] of the External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

■ Settings of External Device

Use the unit address setting switch on the front of the Temperature Controller and the DIP switch on the side of the Temperature Controller for communication settings of the External Device.

Please refer to the manual of the Temperature Controller for more details.

◆ Procedure

- 1. Use the unit address setting switch on the front of the Temperature Controller to set the slave address.
- 2. Use the DIP switch on the side of the Temperature Controller to set the speed, data bit configuration, and communication protocol.
- 3. After completing the settings, turn ON the Temperature Controller again.

◆ Setting Value

Unit address setting switch

Slave address setting	0
-----------------------	---

DIP Switch

SW	Settings	Description
4	ON	Speed: 19200 bps
5	OFF	Communication must easily Heat communication (DVC communication)
6	OFF	Communication protocol: Host communication (RKC communication) Data length 8 bits, no parity, stop 1 bit
7	OFF	Butt length o ons, no party, stop 1 on
8	OFF	DIP switch setting: Enabled

NOTE

• Parameters to be set vary depending on the Temperature Controller. Please refer to the manual of the Temperature Controller for more details.

4 Setup Items


Set communication settings of the Display with GP-Pro EX or in off-line mode of the Display.

The setting of each parameter must be identical to that of External Device.

"3 Example of Communication Setting" (page 12)

4.1 Setup Items in GP-Pro EX

■ Communication Settings

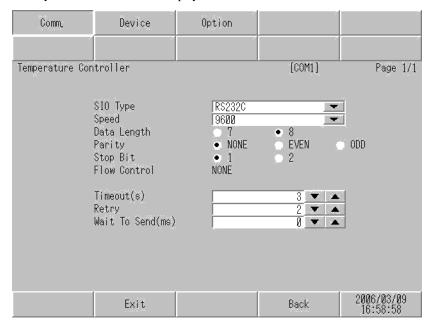
Setup Items	Setup Description
SIO Type	Select the SIO type to communicate with the External Device.
Speed	Select speed between the External Device and the Display.
Data Length	Select data length.
Parity	Select how to check parity.
Stop Bit	Select stop bit length.
Flow Control	Display the communication control method to prevent overflow of transmission and reception data.
Timeout	Use an integer from 1 to 127 to enter the time (s) for which the Display waits for the response from the External Device.
Retry	In case of no response from the External Device, use an integer from 0 to 255 to enter how many times the Display retransmits the command.
Wait To Send	Use an integer from 0 to 255 to enter standby time (ms) for the Display from receiving packets to transmitting next commands.
RI/VCC	You can switch RI/VCC of the 9th pin when you select RS232C for SIO type. It is necessary to change RI/5V by changeover switch of IPC when connect with IPC. Please refer to the manual of the IPC for more detail.

■ Device Setting

o display the setting screen, click [[Setting]] of External Device you want to set from [Device-Specific Settings] of [Device/PLC Settings].

When you connect multiple External Device, click from [Device-Specific Settings] of [Device/PLC Settings] to add another External Device.

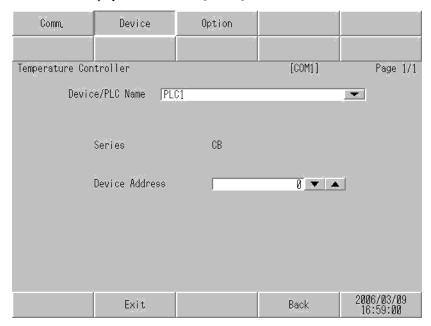
Setup Items	Setup Description
Series	Select the External Device series.
Device Address	Enter the address of the External Device, using 0 to 99.


4.2 Setup Items in Off-Line Mode

- Refer to the Maintenance/Troubleshooting manual for information on how to enter off-line mode or about the operation.
- Cf. Maintenance/Troubleshooting Manual "2.2 Off-line Mode"

■ Communication Settings

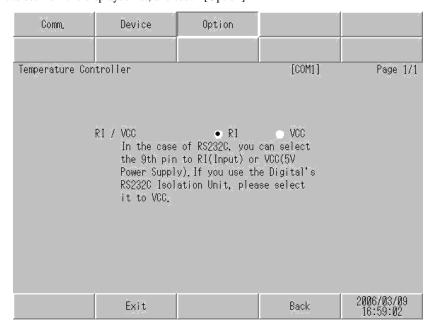
To display the setting screen, touch [Device/PLC Settings] from [Peripheral Settings] in off-line mode. Touch the External Device you want to set from the displayed list.



Setup Items	Setup Description
SIO Type	Select the SIO type to communicate with the External Device. IMPORTANT To make the communication settings correctly, confirm the serial interface specifications of Display unit for [SIO Type]. We cannot guarantee the operation if a communication type that the serial interface does not support is specified. For details concerning the serial interface specifications, refer to the manual for Display unit.
Speed	Select speed between the External Device and the Display.
Data Length	Select data length.
Parity	Select how to check parity.
Stop Bit	Select stop bit length.
Flow Control	Display the communication control method to prevent overflow of transmission and reception data.
Timeout	Use an integer from 1 to 127 to enter the time (s) for which the Display waits for the response from the External Device.
Retry	In case of no response from the External Device, use an integer from 0 to 255 to enter how many times the Display retransmits the command.

Setup Items	Setup Description
Wait To Send	Use an integer from 0 to 255 to enter standby time (ms) for the Display from receiving packets to transmitting next commands.

◆ Device Setting


To display the setting screen, touch [Device/PLC Settings] from [Peripheral Settings]. Touch the External Device you want to set from the displayed list, and touch [Device].

Setup Items	Setup Description
Device/PLC Name	Select the External Device for device setting. Device name is a title of External Device set with GP-Pro EX.(Initial value [PLC1])
Series	Display the External Device series.
Device Address	Enter the address of the External Device, using 0 to 99.

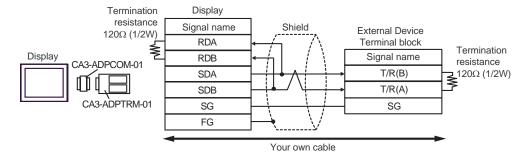
■ Option

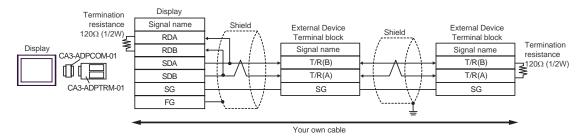
To display the setting screen, touch [Device/PLC Settings] from [Peripheral Settings]. Touch the External Device you want to set from the displayed list, and touch [Option].

Setup Items	Setup Description
RI/VCC	You can switch RI/VCC of the 9th pin when you select RS232C for SIO type. It is necessary to change RI/5V by changeover switch of IPC when connect with IPC. Please refer to the manual of the IPC for more detail.

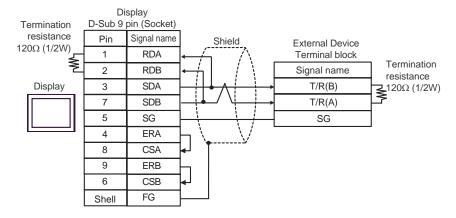
The cable diagram shown below may be different from the cable diagram recommended by RKC INSTRUMENT INC. Please be assured there is no operational problem in applying the cable diagram shown in this manual.

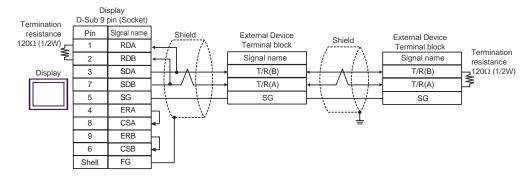
- The FG pin of the External Device body must be D-class grounded. Please refer to the manual of the External Device for more details.
- SG and FG are connected inside the Display. When connecting SG to the External Device, design the system not to form short-circuit loop.
- · Connect the isolation unit, when communication is not stabilized under the influence of a noise etc..
- When connecting with RS422/485 (2 wire) or RS422/485 (4 wire), up to 16 units of temperature controllers
 can be connected. However, when connecting FB400/900 series with RS422/485 (4 wire), only up to 15 units
 can be connected.

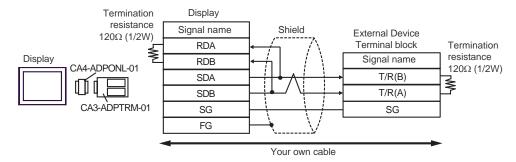

Cable Diagram 1


Display (Connection Port)		Cable	Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1)	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*3 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	
IPC*4	Е	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	F	Your own cable	

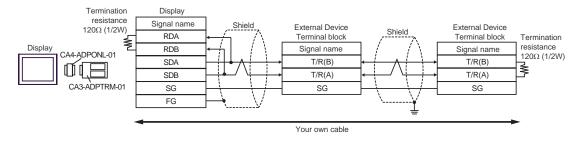
^{*1} All GP models except AGP-3302B


^{*2} All ST models except AST-3211A and AST-3302B

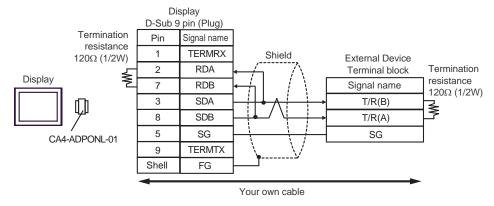

- *3 All GP models except GP-3200 series and AGP-3302B
- *4 Only the COM port which can communicate by RS-422/485 (2 wire) can be used.
 - IPC COM Port (page 9)
 - A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
 - 1:1 Connection

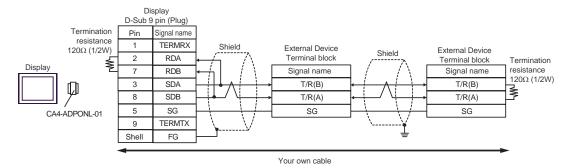


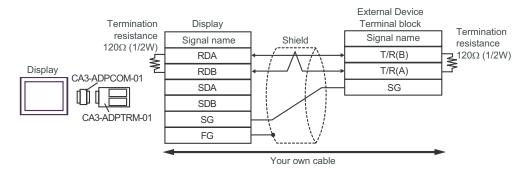
- B) When using your own cable
- 1:1 Connection



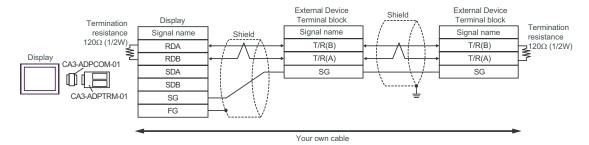
- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



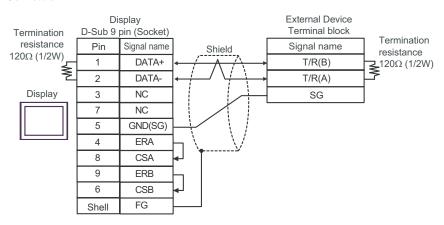

• 1:n Connection

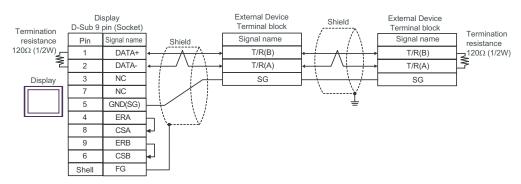

D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

• 1:1 Connection



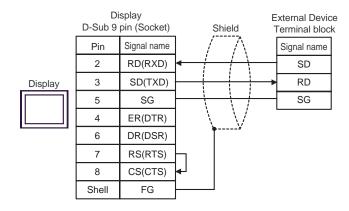
- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



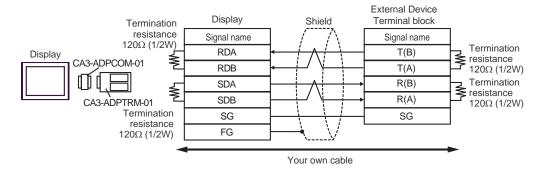

• 1:n Connection

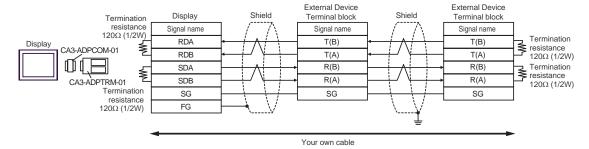
F) When using your own cable

1:1 Connection

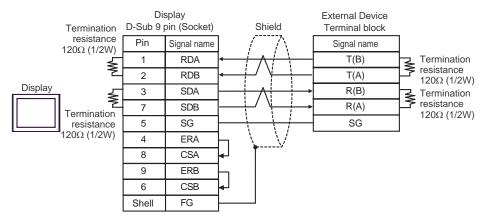


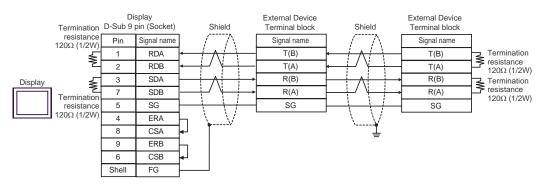
Display (Connection Port)	Cable	Notes
GP (COM1) ST (COM1) LT (COM1) IPC*1 PC/AT	Your own cable	The cable length must be 15m or less.


^{*1} Only the COM port which can communicate by RS-232C can be used.

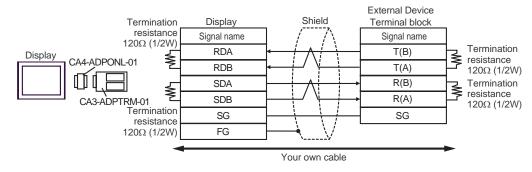

■ IPC COM Port (page 9)

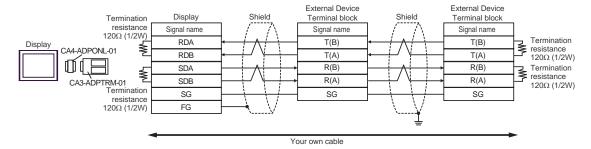
Display (Connection Port)	Cable		Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1) IPC*3	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*4 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	


- *1 All GP models except AGP-3302B
- *2 All ST models except AST-3211A and AST-3302B
- *3 Only the COM port which can communicate by RS-422/485 (4 wire) can be used.
 - IPC COM Port (page 9)
- *4 All GP models except GP-3200 series and AGP-3302B
 - A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
 - 1:1 Connection

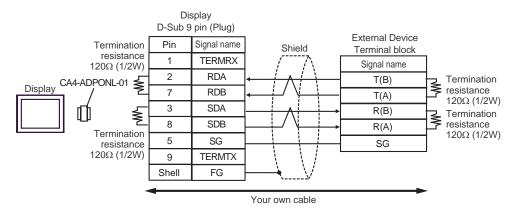


B) When using your own cable

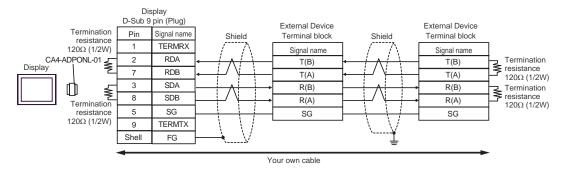

1:1 Connection



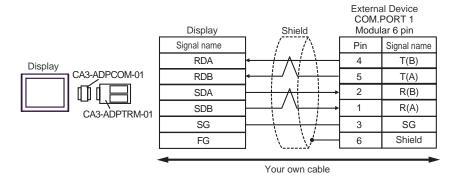
• 1:n Connection

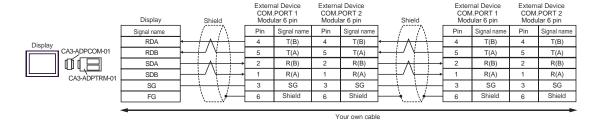


- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



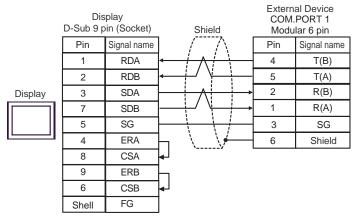
- D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable
- 1:1 Connection



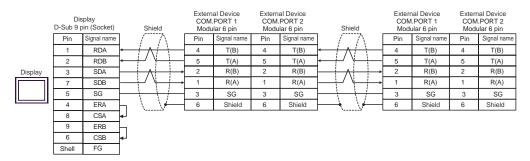

• 1:n Connection

Display (Connection Port)	Cable		Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1) IPC*3	COM2) A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*4 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	

- *1 All GP models except AGP-3302B
- *2 All ST models except AST-3211A and AST-3302B
- *3 Only the COM port which can communicate by RS-422/485 (4 wire) can be used.
 - IPC COM Port (page 9)
- *4 All GP models except GP-3200 series and AGP-3302B
 - A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
 - 1:1 Connection

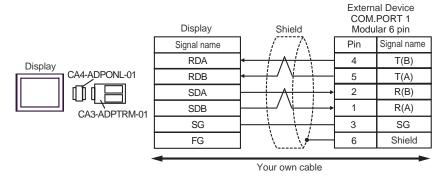


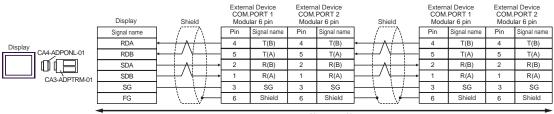
NOTE


Terminal resistance is not required.

B) When using your own cable

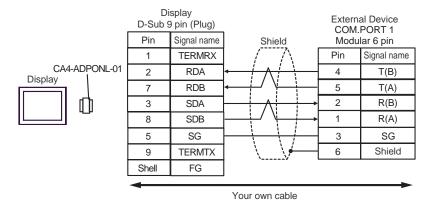
• 1:1 Connection



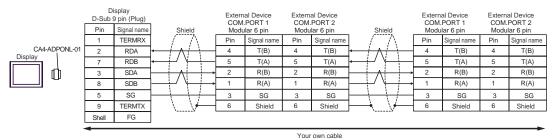

• 1:n Connection

NOTE

- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



Your own cable


NOTE

D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

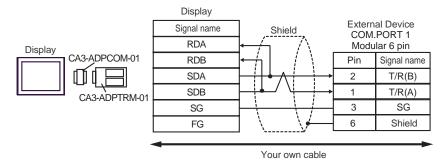
• 1:1 Connection

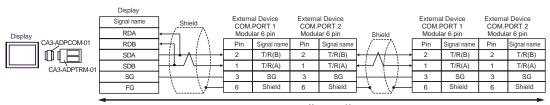
• 1:n Connection

NOTE

Display (Connection Port)		Cable	Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1)	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*3 (COM2)	C D	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	The cable length must be 1200m or less.
IPC*4	E	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable Your own cable	

^{*1} All GP models except AGP-3302B

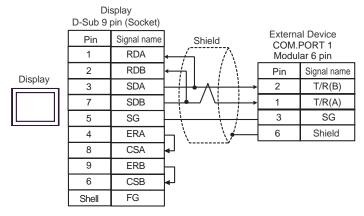

^{*2} All ST models except AST-3211A and AST-3302B


^{*3} All GP models except GP-3200 series and AGP-3302B

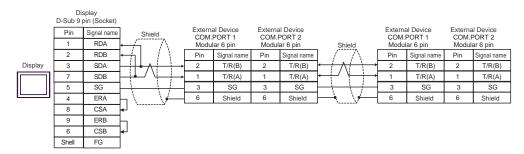
^{*4} Only the COM port which can communicate by RS-422/485 (2 wire) can be used.

IPC COM Port (page 9)

- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

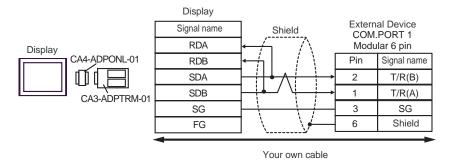


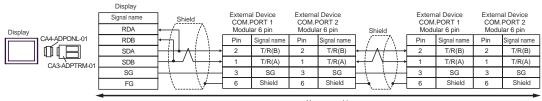
Your own cab


NOTE

B) When using your own cable

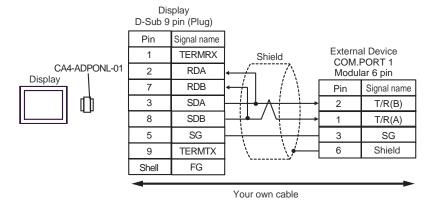
• 1:1 Connection



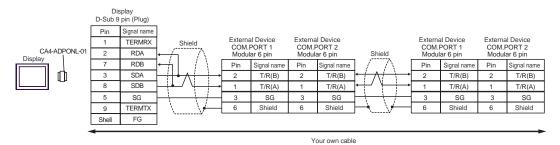

• 1:n Connection

NOTE

- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

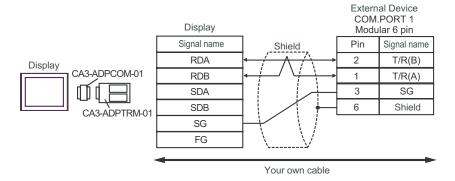


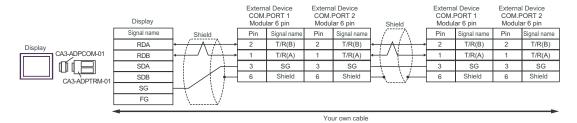
Your own cable


NOTE

D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

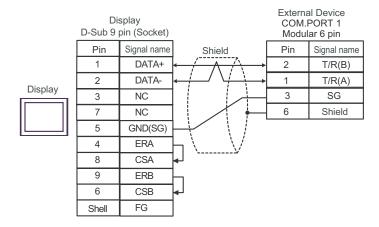
• 1:1 Connection

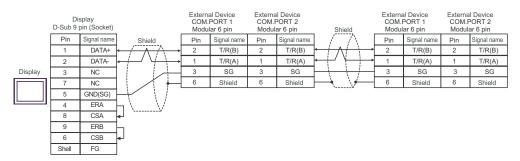



1:n Connection

NOTE

- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



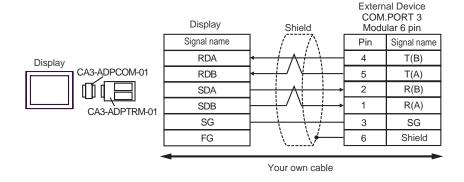

NOTE

F) When using your own cable

• 1:1 Connection

• 1:n Connection

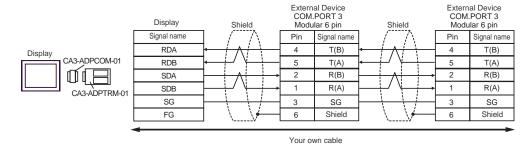
NOTE


Display (Connection Port)	Cable		Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1) IPC*3	Α	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*4 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	

^{*1} All GP models except AGP-3302B

■ IPC COM Port (page 9)

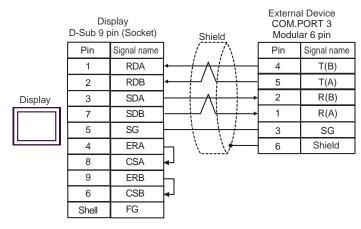
A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable


• 1:1 Connection

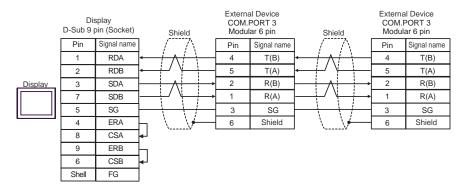
^{*2} All ST models except AST-3211A and AST-3302B

^{*3} Only the COM port which can communicate by RS-422/485 (4 wire) can be used.

^{*4} All GP models except GP-3200 series and AGP-3302B

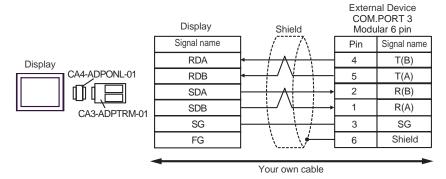


NOTE

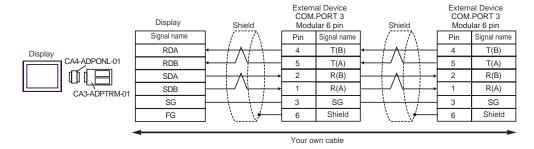

• Terminal resistance is not required.

B) When using your own cable

• 1:1 Connection

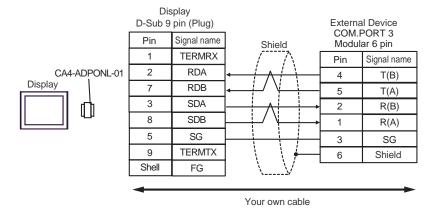


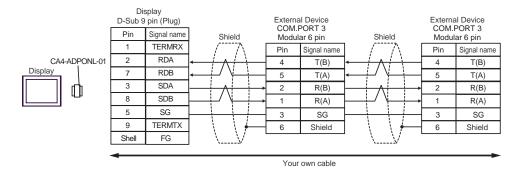
1:n Connection



NOTE

- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection




1:n Connection

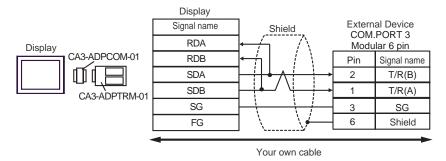
NOTE

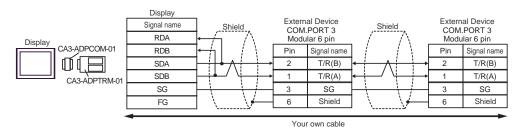
- Terminal resistance is not required.
- D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable
- 1:1 Connection

NOTE

Display (Connection Port)		Cable	Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1)	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*3 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	
IPC*4	Е	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	F	Your own cable	

^{*1} All GP models except AGP-3302B

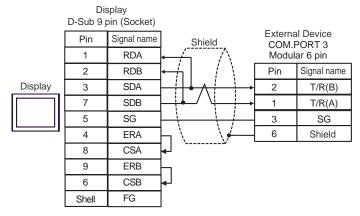

^{*2} All ST models except AST-3211A and AST-3302B

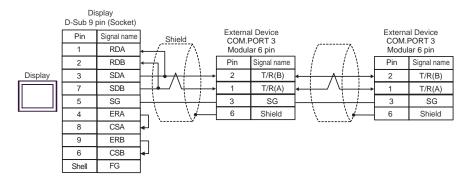

^{*3} All GP models except GP-3200 series and AGP-3302B

^{*4} Only the COM port which can communicate by RS-422/485 (2 wire) can be used.

IPC COM Port (page 9)

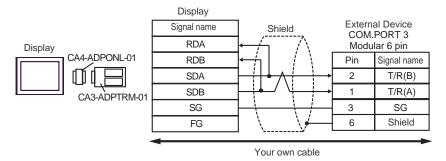
- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

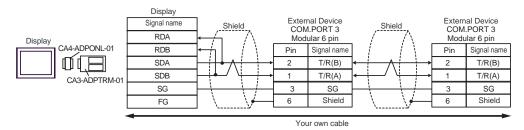



NOTE

B) When using your own cable

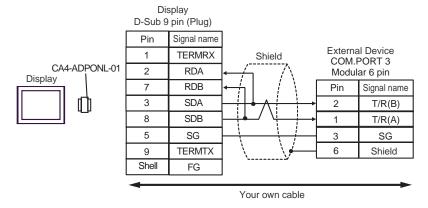
• 1:1 Connection

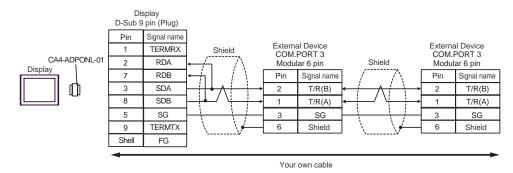



1:n Connection

NOTE

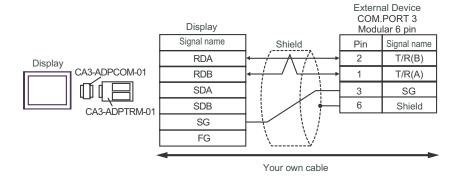
- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

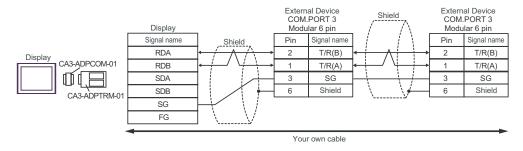



NOTE

D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

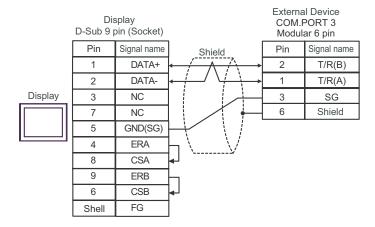
• 1:1 Connection

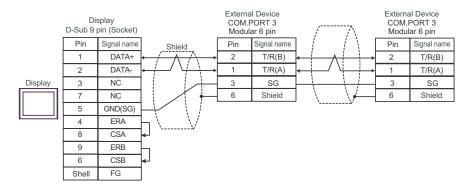



1:n Connection

NOTE

- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection




NOTE

F) When using your own cable

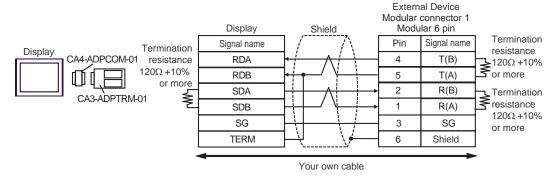
• 1:1 Connection

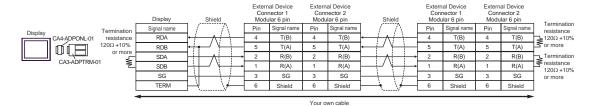
• 1:n Connection

NOTE

Display (Connection Port)		Cable	Notes
GP ^{*1} (COM1) AGP-3302B (COM2) ST ^{*2} (COM2) LT (COM1) IPC ^{*3}	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*4 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	

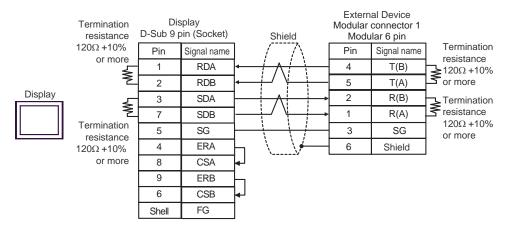
^{*1} All GP models except AGP-3302B

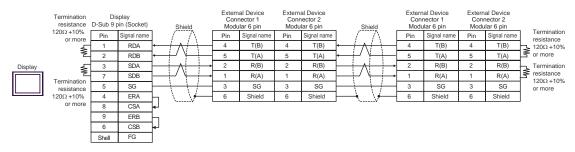

^{*2} All ST models except AST-3211A and AST-3302B


^{*3} Only the COM port which can communicate by RS-422/485 (4 wire) can be used.

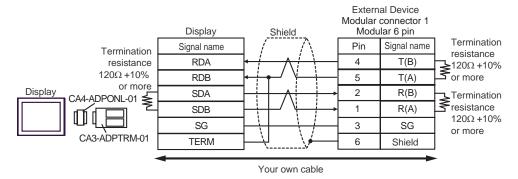
IPC COM Port (page 9)

^{*4} All GP models except GP-3200 series and AGP-3302B

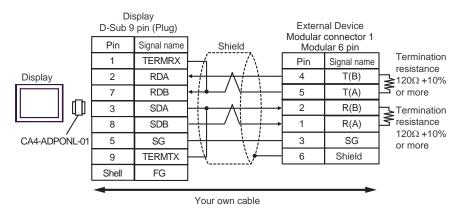

- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

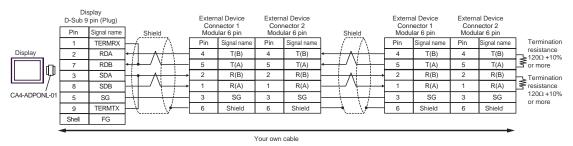


B) When using your own cable


• 1:1 Connection

• 1:n Connection


- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



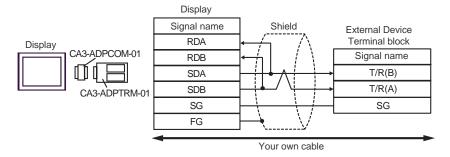
D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

1:1 Connection

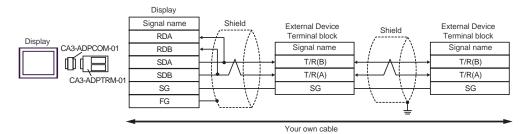
1:n Connection

Display (Connection Port)		Cable	Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1)	Α	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*3 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	
IPC*4	Е	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	F	Your own cable	

^{*1} All GP models except AGP-3302B

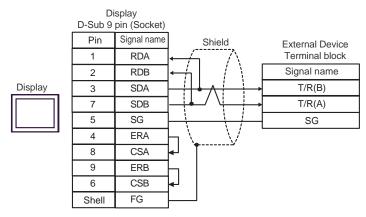

^{*2} All ST models except AST-3211A and AST-3302B

^{*3} All GP models except GP-3200 series and AGP-3302B

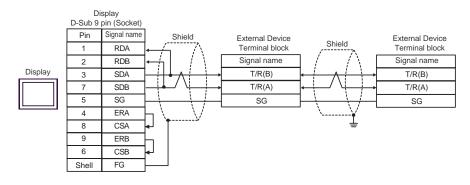

^{*4} Only the COM port which can communicate by RS-422/485 (2 wire) can be used.

IPC COM Port (page 9)

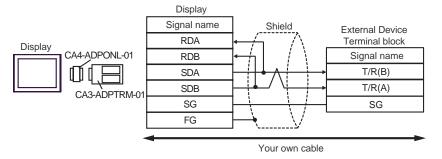
- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

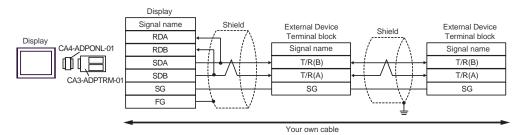


1:n Connection

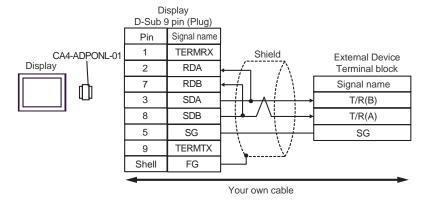


B) When using your own cable

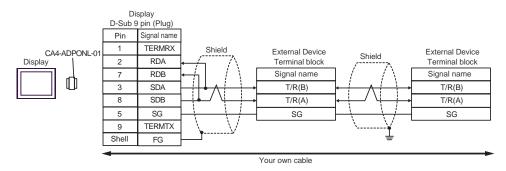

• 1:1 Connection

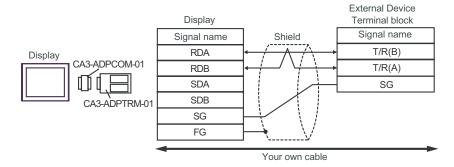


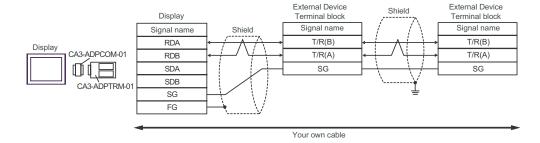
1:n Connection



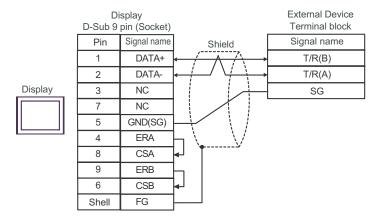
- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection

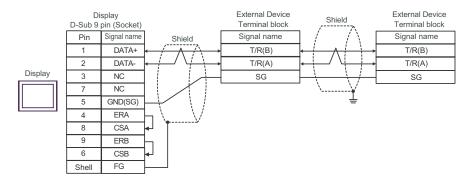



- D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable
- 1:1 Connection



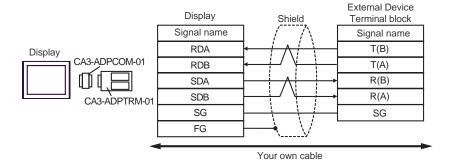
1:n Connection


- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



F) When using your own cable

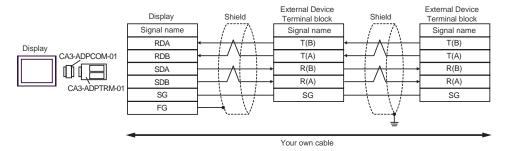
• 1:1 Connection



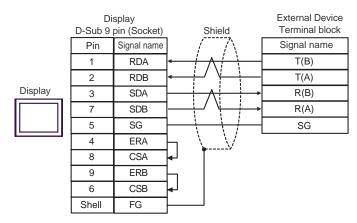
Display (Connection Port)		Cable	Notes
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1) IPC*3		COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	
	В	Your own cable	
GP*4 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + Your own cable	The cable length must be 1200m or less.
	D	Online adapter by Pro-face CA4-ADPONL-01 + Your own cable	

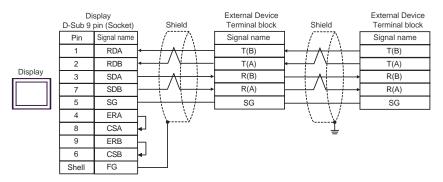
^{*1} All GP models except AGP-3302B

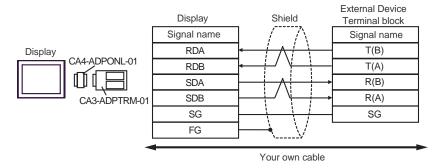
F ■ IPC COM Port (page 9)

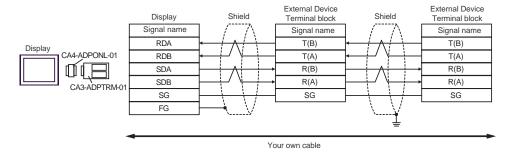

A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable

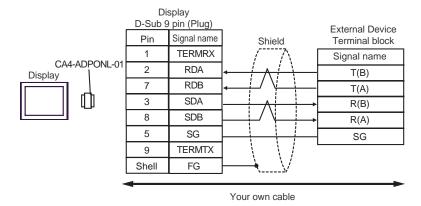
^{*2} All ST models except AST-3211A and AST-3302B

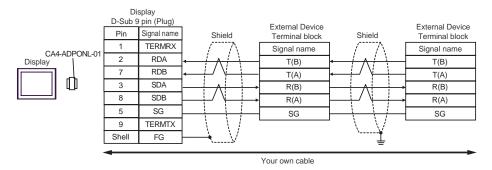

^{*3} Only the COM port which can communicate by RS-422/485 (4 wire) can be used.


^{*4} All GP models except GP-3200 series and AGP-3302B


B) When using your own cable

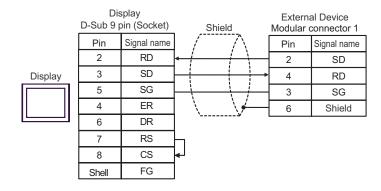

1:1 Connection


- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face and your own cable
- 1:1 Connection



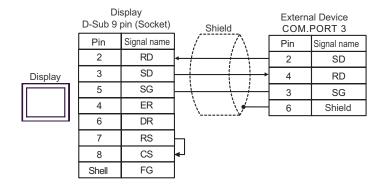
D) When using the online adapter (CA4-ADPONL-01) by Pro-face and your own cable

• 1:1 Connection


1:n Connection

Display (Connection Port)	Cable	Notes
GP (COM1) ST (COM1) LT (COM1) IPC*1 PC/AT	Your own cable	The cable length must be 15m or less.

^{*1} Only the COM port which can communicate by RS-232C can be used.


■ IPC COM Port (page 9)

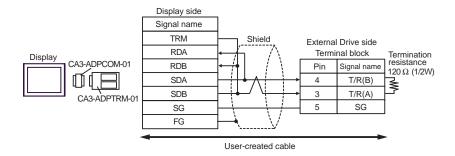
Display (Connection Port)	Cable	Notes
GP (COM1) ST (COM1) LT (COM1) IPC*1 PC/AT	Your own cable	The cable length must be 15m or less.

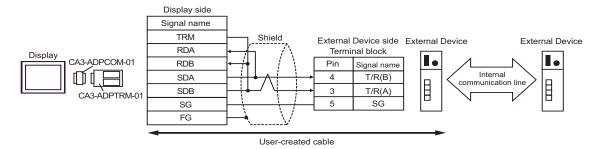
^{*1} Only the COM port which can communicate by RS-232C can be used.

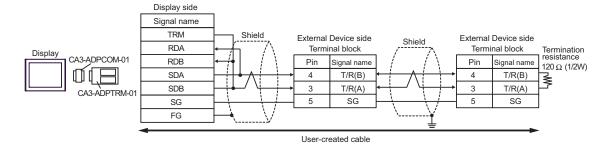
[■] IPC COM Port (page 9)

Display (Connection Port)		Cable	Remarks
GP*1 (COM1) AGP-3302B (COM2) ST *2 (COM2) LT (COM1)	A	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable	
	В	User-created cable	
GP*3 (COM2)	С	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable	Cable length: 1200m or less
	D	Online adapter by Pro-face CA4-ADPONL-01 + User-created cable	
IPC*4	Е	COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable	
	F	User-created cable	

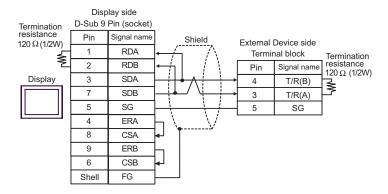
^{*1} All GP models except AGP-3302B

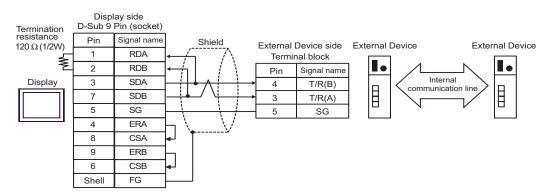

^{*2} All ST models except AST-3211A and AST-3302B

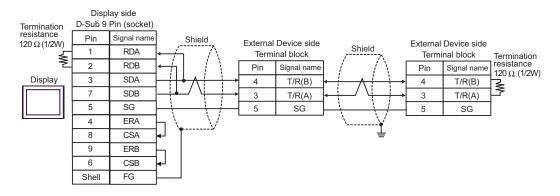

^{*3} All GP models except GP-3200 and AGP-3302B

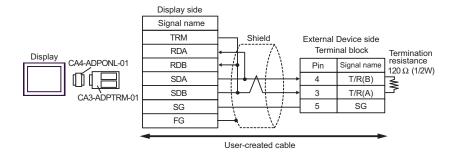

^{*4} Only the COM port which can communicate by RS-422/485 (2wire) can be used.

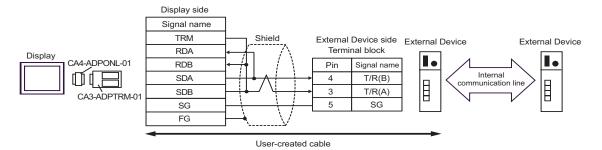
[■] IPC COM Port (page 9)

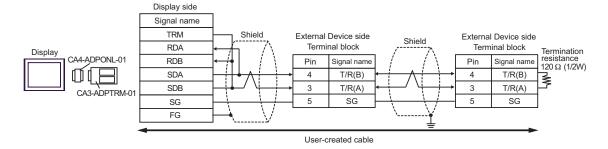

- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, and a user-created cable.
- 1:1 Connection



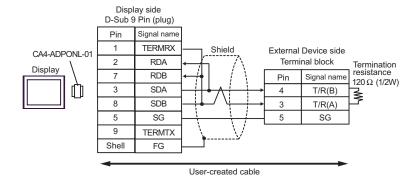


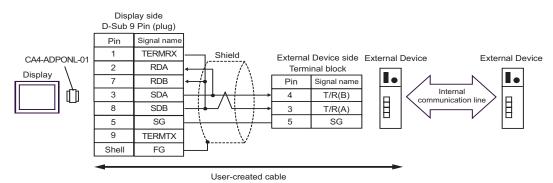

- B) When using a user-created cable.
- 1:1 Connection

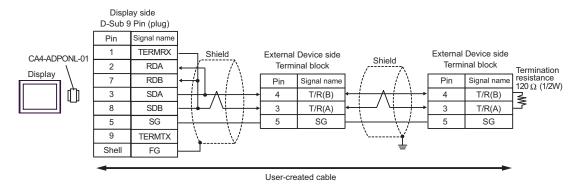




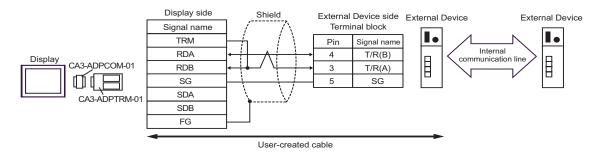
- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, and a user-created cable.
- 1:1 Connection

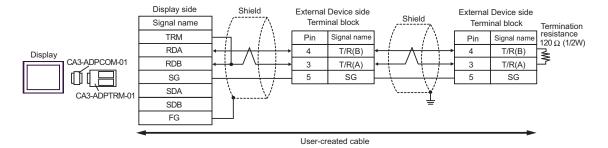




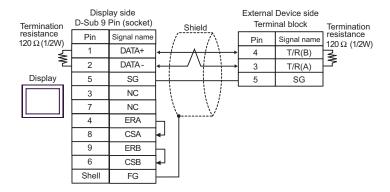

1:n Connection

- D) When using the online adapter (CA4-ADPONL-01) by Pro-face, and a user-created cable.
- 1:1 Connection

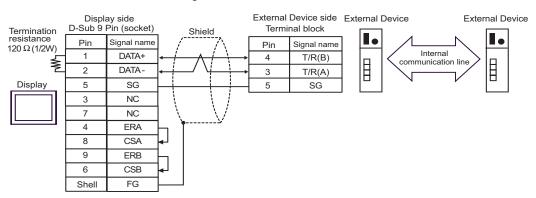


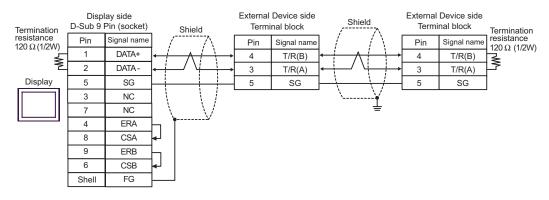


- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, and a user-created cable.
- 1:1 Connection



1:n Connection




F) When using a user-created cable.

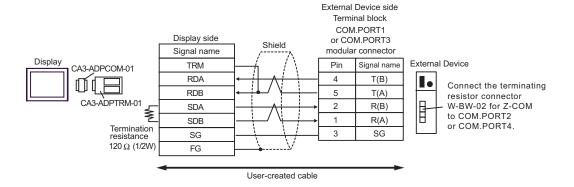
• 1:1 Connection

• 1:n Connection (When connecting with the internal communication line)

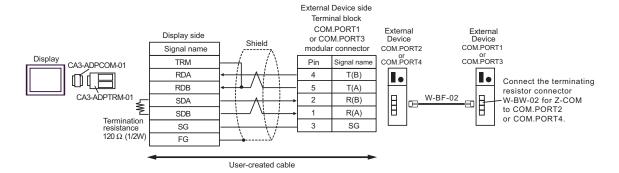
Display (Connection Port)	Cable	Remarks
GP*1 (COM1) AGP-3302B (COM2) ST*2 (COM2) LT (COM1) IPC*3	A COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable + Connection cable from RKC Instrument Inc.*5 W-BF-02	
	B User-created cable + Connection cable from RKC Instrument Inc.*5 W-BF-02	
GP*4 (COM2)	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable + Connection cable from RKC Instrument Inc.*5 W-BF-02	Cable length: 1200m or less
	Online adapter by Pro-face CA4-ADPONL-01 + User-created cable + Connection cable from RKC Instrument Inc.*5 W-BF-02	

^{*1} All GP models except AGP-3302B

^{*2} All ST models except AST-3211A and AST-3302B


^{*3} Only the COM port which can communicate by RS-422/485 (4wire) can be used.

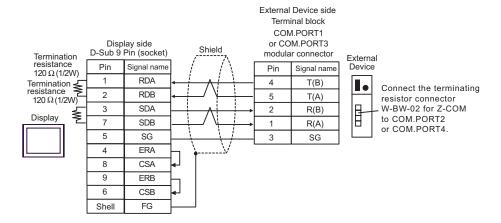
[■] IPC COM Port (page 9)


^{*4} All GP models except GP-3200 and AGP-3302B

^{*5} To use multiple External Devices, utilize the W-BF-02 connection cable from RKC Instrument Inc.

- A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection

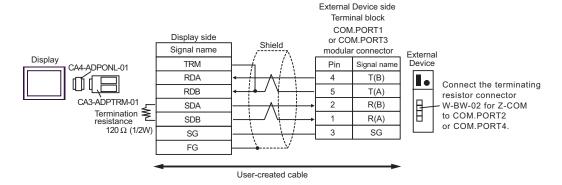
1:n Connection



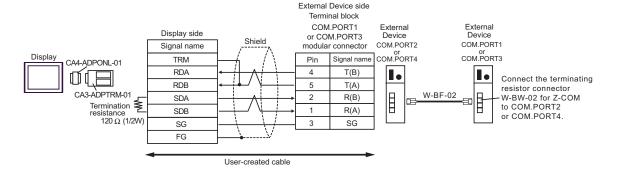

- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

B) When using a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).

• 1:1 Connection

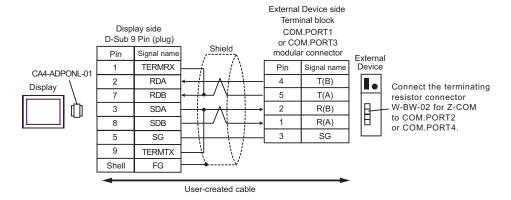


1:n Connection

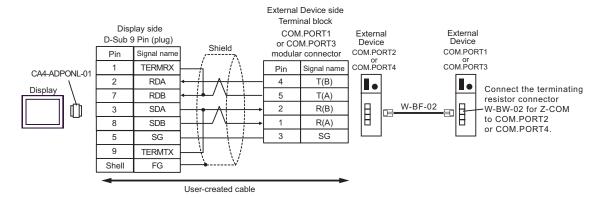


- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection



1:n Connection

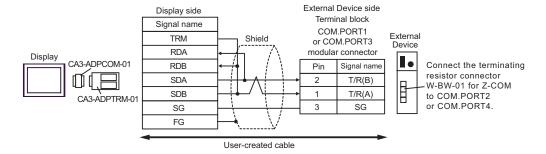


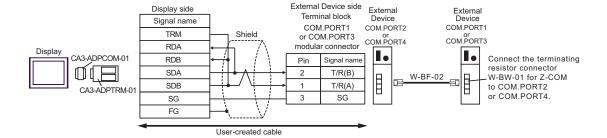
- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

- D) When using the online adapter (CA4-ADPONL-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection

1:n Connection

- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

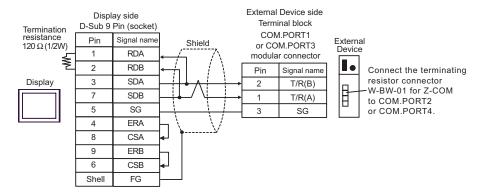

Display (Connection Port)	Cable	Remarks
GP ^{*1} (COM1) AGP-3302B (COM2) ST ^{*2} (COM2) LT (COM1)	A COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-fa CA3-ADPTRM-01 + User-created cable + Connection cable from RKC Instrument Inc. W-BF-02	ace
	B User-created cable + Connection cable from RKC Instrument Inc. W-BF-02	*5
GP*3 (COM2)	Online adapter by Pro-face CA4-ADPONL-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable + Connection cable from RKC Instrument Inc. W-BF-02	
	Online adapter by Pro-face CA4-ADPONL-01 + User-created cable + Connection cable from RKC Instrument Inc. W-BF-02	.*5
IPC*4	E COM port conversion adapter by Pro-face CA3-ADPCOM-01 + Terminal block conversion adapter by Pro-face CA3-ADPTRM-01 + User-created cable + Connection cable from RKC Instrument Inc. W-BF-02	ace
	F Connection cable from RKC Instrument Inc. W-BF-02	*5

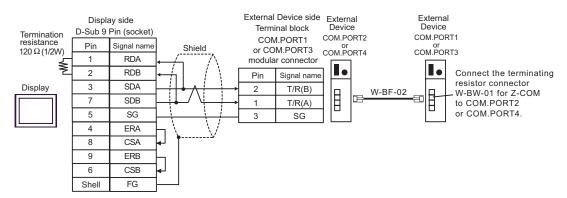

^{*1} All GP models except AGP-3302B

^{*2} All ST models except AST-3211A and AST-3302B

^{*3} All GP models except GP-3200 and AGP-3302B

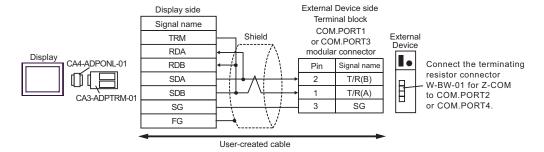
- *4 Only the COM port which can communicate by RS-422/485 (2wire) can be used.
 - IPC COM Port (page 9)
- *5 To use multiple External Devices, utilize the W-BF-02 connection cable from RKC Instrument Inc.
 - A) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
 - 1:1 Connection

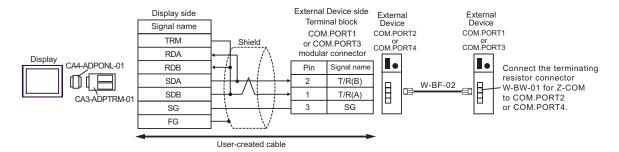



- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

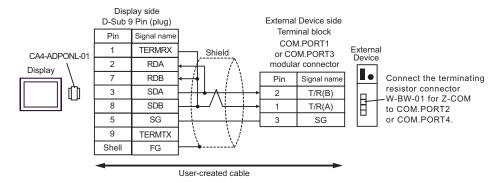
B) When using a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).

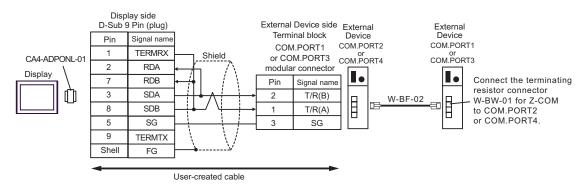
• 1:1 Connection




• 1:n Connection

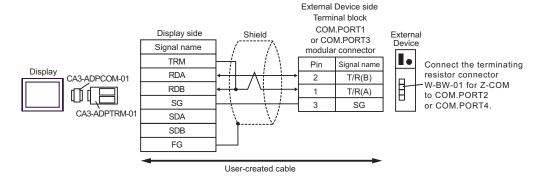
- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

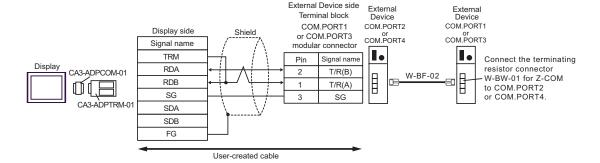

- C) When using the online adapter (CA4-ADPONL-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection



- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

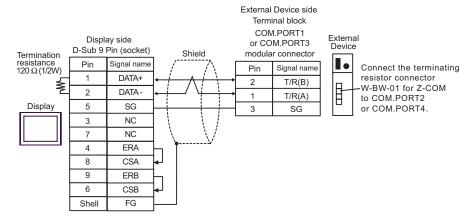
- D) When using the online adapter (CA4-ADPONL-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection

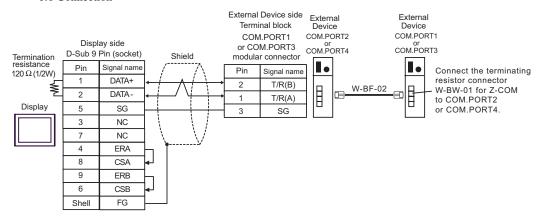



1:n Connection

- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

- E) When using the COM port conversion adapter (CA3-ADPCOM-01), the terminal block conversion adapter (CA3-ADPTRM-01) by Pro-face, a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).
- 1:1 Connection

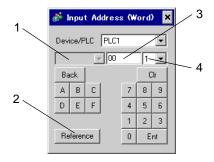



- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

F) When using a user-created cable, and the connection cable from RKC Instrument Inc.(W-BF-02).

• 1:1 Connection

• 1:1 Connection



- We recommend the TM4P-66P from HIROSE ELECTRIC CO., LTD. as the modular connector.
- To use the External Device's COM.PORT, pair COM.PORT1 with COM.PORT2, and COM.PORT3 with COM.PORT4.

6 Supported Device

Range of supported device address is shown in the table below. Please note that the actually supported range of the devices varies depending on the External Device to be used. Please check the actual range in the manual of your connecting equipment.

Input address of external device in the dialog below.

1. Channel number Select the channel number of external device.

It can be selected when SR Mini HG(H-PCP-A/B), SR Mini HG(H-PCP-J), SRZ(Z-TIO),

SRZ(Z-DIO), SRZ(Z-CT) and SRZ(Z-COM) are used.

2. Reference The list of available identifiers is displayed.

When clicking the identifier to be used and pressing "Select," the address is inputted.

Address is set

Combination of identifier and address differs per external device. Please refer to the list of

identifiers.

4. Decimal digit number Decimal digit number of data is set.

■ When reading out:

Data read out from the temperature controller are dealt as integral number.

e.g. When the value of temperature controller is 100.0;

Value of temperature controller: 100.0 Value indicated by display: 1000

To display decimal points in value indication, set "decimal digit number" of "display data form." In the case of the example above, the decimal digit number is the first decimal place, so set "1."

e.g. When the value of temperature controller is 100.0;

Value of temperature controller: 100.0 Value indicated by Diaplay: 100.0

The decimal point position is internally processed depending on the specified address.

Specified same as the address on the device list: No decimal point

Specified by adding 0x1000 to the address on the device list

: One digit after decimal point.

Specified by adding 0x2000 to the address on the device list

: Two digit after decimal point.

Specified by adding 0x3000 to the address on the device list

: Three digit after decimal point.

	Data of display					
Data of temperature controller	Specified same as the address	Specified by adding 0x1000 to the address	Specified by adding 0x2000 to the address	Specified by adding 0x3000 to the address		
123	123	1230	12300	23000		
123.4	123	1234	12340	23400		
12.34	12	123	1234	12340		
1.234	1	12	123	1234		

GP data are as follows depending on the address specifying method.

* When address specifying method does not match decimal point position of data of temperature controller, truncate the decimal digit number of the specified address or add a zero.

Data are indicated in decadal system and are 6 digits or more, upper level digits are truncated.

■ When writing:

When writing in the temperature controller, value is set in integral number. Decimal point position is internally processed depending on the specified address.

Specified same as the address on the device list: No decimal point Specified by adding 0x1000 to the address on the device list

: One digit after decimal point.

Specified by adding 0x2000 to the address on the device list

: Two digit after decimal point.

Specified by adding 0x3000 to the address on the device list

: Three digit after decimal point.

Example 1) When writing 100.0 in the first alarm setting (A1) of CB series;

Address value set by indicator: 0x1007 Written value set by indicator: 1000

Example 2) When writing 100 in the first alarm setting (A1) of CB series;

Address value set by indicator: 0x0007 Written value set by indicator: 100

Data written in the temperature controller are as follows depending on the address specifying method.

	Data written in the temperature controller					
Data of temperature controller	Specified same as the address	Specified by adding 0x1000 to the address	Specified by adding 0x2000 to the address	Specified by adding 0x3000 to the address		
1	1	0.1	0.01	0.001		
123	123	12.3	1.23	0.123		
1234	1234	123.4	12.34	1.234		

^{*} When address specifying method does not match decimal point position of data of temperature controller, truncate the decimal digit number of the specified address or add a zero.

For details of the setting value range or decimal point position of each identifier, please refer to the communication manual of the temperature controller made by RKC INSTRUMENT INC.

• The decimal position is saved together with the device string.

O000
Address
Decimal position (the setting range is 0 to 3)

6.1 CB Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-0038.F	0000-0038	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured value (PV)
01	M2	Current transformer input 1
02	M3	Current transformer input 2
03	AA	Alarm 1 status
04	AB	Alarm 2 status
05	B1	Burnout
06	S1	Set value (SV)
07	A1	Alarm 1 setting
08	A2	Alarm 2 setting
09	A3	Heater break alarm 1 setting
0A	A4	Heater break alarm 2 setting
0B	A5	Control loop break alarm (LBA) setting
0C	A6	LBA deadband
0D	G1	Autotuning (AT)
0E	G2	Self-tuning (ST)
0F	P1	Heat-side proportional band
10	I1	Integral time
11	D1	Derivative time
12	W1	Anti-reset windup
13	ТО	Heat-side proportioning cycle
14	P2	Cool-side proportional band
15	V1	Overlap/deadband
16	T1	Cool-side proportioning cycle
17	PB	PV bias
18	LK	Set data lock function
19	SR	RUN/STOP transfer
1A	ER	Error code
1B	IO	Initialization mode selection
1C	IP	Setting necessary code [Cod]
1D	XI	Input type selection [SL1]
1E	XQ	Engineering unit and cooling type selection [SL2]
1F	LV	Heater break alarm (HBA), control loop break alarm (LBA), special specification, or
	-	control loop break alarm (LBA) output selection [SL3]
20	XA	First alarm (ALM1) type or First alarm (ALM1) with hold action selection [SL4]
21	XB	Second alarm (ALM2) type or Second alarm (ALM2) with hold action selection [SL5]

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
22	CA	Control action type selection [SL6]
23	Z1	Energized/de-energized alarm selection, special specification selection 1 [SL7]
24	Z2	Special specification selection 2 [SL8]
25	Z3	Special specification selection 3 [SL9]
26	DH	Option selection [SL10]
27	XC	SV alarm type selection [SL11]
28	XV	Setting limiter (high limit) [SLH]
29	XW	Setting limiter (low limit) [SLL]
2A	XU	Setting the position of decimal point [PGdP]
2B	MH	Differential gap setting of ON/OFF action [oH]
2C	HA	Differential gap setting of first alarm (ALM1) [AH1]
2D	НВ	Differential gap setting of second alarm (ALM2) [AH2]
2E	XR	CT ratio setting [CTr]
2F	F1	Digital filter setting [dF]
30	GH	Time factor assumed to be safe [STTM]
31	PU	Factor to calculate proportional band [STPK]
32	IU	Factor to calculate integral time [STIK]
33	IL	Integral time limiter [ILIM]
34	HP	Holding peak ambient temperature [TCJ]
35	UT	Operating time display unit (Upper digits) [WTH]
36	UU	Operating time display unit (Lower digits) [WTL]
37	EB	EEPROM storage mode
38	EM	EEPROM storage state

IMPORTANT

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.2 FB Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-00CD.1F	0000-00CD	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

<Communication identifier list>

Address	Identifier	Description
0	M1	Measured value (PV) monitor
1	M3	Current transformer 1 (CT1) input value monitor
2	M4	Current transformer 2 (CT2) input value monitor
3	MS	Set value (SV) monitor
4	S2	Remote setting (RS) input value monitor
5	B1	Burnout state monitor
6	B2	Burnout state monitor of feedback resistance input
7	AA	Event 1 state monitor
8	AB	Event 2 state monitor
9	AC	Event 3 state monitor
0A	AD	Event 4 state monitor
0B	AE	Heater break alarm 1 (HBA1) state monitor
0C	AF	Heater break alarm 2 (HBA2) state monitor
0D	O1	Manipulated output value (MV1) monitor [heat-side]
0E	O2	Manipulated output value (MV2) monitor [cool-side]
0F	ER	Error code
10	L1	Digital input (DI) state monitor
11	Q1	Output state monitor
12	L0	Operation mode state monitor
13	TR	Memory area soak time monitor
14	UT	Integrated operating time monitor
15	Нр	Holding peak value ambient temperature monitor
16	HM	Power feed forward input value monitor
17	EM	Backup memory state monitor
18	VR	ROM version monitor
19	G1	PID/AT transfer
1A	J1	Auto/Manual transfer
1B	C1	Remote/Local transfer
1C	SR	RUN/STOP transfer
1D	ZA	Memory area transfer
1E	IL	Interlock release
1F	A1	Event 1 set value (EV1)
20	A2	Event 2 set value (EV2)
21	A3	Event 3 set value (EV3)

Address	Identifier	Description
22	A4	Event 4 set value (EV4)
23	A5	Control loop break alarm (LBA) time
24	N1	LBA deadband
25	S1	Set value (SV)
26	P1	Proportional band [heat-side]
27	I1	Integral time [heat-side]
28	D1	Derivative time [heat-side]
29	CA	Control response parameter
2A	P2	Proportional band [cool-side]
2B	I2	Integral time [cool-side]
2C	D2	Derivative time [cool-side]
2D	V1	Overlap/Deadband
2E	MR	Manual reset
2F	HH	Setting change rate limiter (up)
30	HL	Setting change rate limiter (down)
31	TM	Area soak time
32	LP	Link area number
33		Heater break alarm 1 (HBA1) set value
	A7	
34	NE	Heater break determination point 1
35	NF	Heater melting determination point 1
36	A8	Heater break alarm 2 (HBA2) set value
37	NH	Heater break determination point 2
38	NI	Heater melting determination point 2
39	PB	PV bias
3A	F1	PV digital filter
3B	PR	PV ratio
3C	DP	PV low input cut-off
3D	RB	RS bias
3E	F2	RS digital filter
3F	PR	RS ratio
40	Т0	Proportional cycle time [heat-side]
41	T1	Proportional cycle time [cool-side]
42	ON	Manual manipulated output value
43	LK	Set lock level
44	DX	STOP display
45	DA	Bar graph display
46	DE	Bar graph display resolution
47	DK	Direct key 1
48	DL	Direct key 2
49	DM	Direct key 3
4A	DN	Direct key type
4B	XI	Input type
4C	PU	Display unit
4D	XU	Decimal point position
4E	XV	Input scale high
4F	XW	Input scale low
50	AV	Input error determination point (high)
51	AW	Input error determination point (low)
52	BS	TC input burnout direction
53	XH	Square root extraction
54	JT	Power supply frequency
55	TZ	Sampling cycle
	1L	Samping Cycle

Address	Identifier	Description
56	XR	Remote setting input type
57	H2	Digital input (DI) assignment
58	E0	Output assignment
59	TH	Timer 1
5A	TI	Timer 2
5B	TJ	Timer 3
5C	TK	Timer 4
5D	NA	Energized/De-energized
5E	LY	Alarm (ALM) lamp lighting condition 1
5F	LZ	Alarm (ALM) lamp lighting condition 2
60	SS	Output status at STOP mode
61	LA	Transmission output type
62	HV	Transmission output scale high
63	HW	Transmission output scale low
64	XA	Event 1 type
65	WA	Event 1 hold action
66	LF	Event 1 interlock
67	HA	Event 1 differential gap
68	TD	Event 1 delay timer
69	OA	Event 1 action at input error
6A	XB	Event 2 type
6B	WB	Event 2 type Event 2 hold action
6C	LG	Event 2 interlock
6D	HB	
		Event 2 differential gap
6E	TG	Event 2 delay timer
6F	OB	Event 2 action at input error
70	XC	Event 3 type
71	WC	Event 3 hold action
72	LH	Event 3 interlock
73	HC	Event 3 differential gap
74	TE	Event 3 delay timer
75	OC	Event 3 action at input error
76	XD	Event 4 type
77	WD	Event 4 hold action
78	LI	Event 4 interlock
79	HD	Event 4 differential gap
7A	TF	Event 4 delay timer
7B	OD	Event 4 action at input error
7C	XS	CT1 ratio
7D	ZF	CT1 assignment
7E	ND	Heater break alarm 1 (HBA1) type
7F	DH	Number of heater break alarm 1 (HBA1) delay times
80	XT	CT2 ratio
81	ZG	CT2 assignment
82	NG	Heater break alarm 2 (HBA2) type
83	DF	Number of heater break alarm 2 (HBA2) delay times
84	XN	Hot/Cold start
85	SX	Start determination point
86	KM	External input type
87	MC	Master channel selection
88	XL	SV tracking
89	OT	MV transfer function
<u> </u>	1	· ·

Address	Identifier	Description			
8A	XE	Control action			
8B	PK	Integral/derivative time decimal point position			
8C	KA	Derivative term operating factor			
8D	KB	Undershoot suppression factor			
8E	DG	Derivative gain			
8F	IV	ON/OFF action differential gap (upper)			
90	IW	ON/OFF action differential gap (lower)			
91	WH	Action (high) at input error			
92	WL	Action (low) at input error			
93	OE	Manipulated output value at input error			
94	OF	Manipulated output value (MV1) at STOP mode			
95	OG	Manipulated output value (MV2) at STOP mode			
96	PH	Output change rate limiter (up) [MV1]			
97	PL	Output change rate limiter (down) [MV1]			
98	ОН	Output limiter (high) [MV1]			
99	OL	Output limiter (low) [MV1]			
9A	PX	Output change rate limiter (up) [MV2]			
9B	PY	Output change rate limiter (down) [MV2]			
9C	OX	Output limiter (high) [MV2]			
9D	OY	Output limiter (low) [MV2]			
9E	PF	Power feed forward selection			
9F	PZ	Power feed forward gain			
A0	GB	AT bias			
A1	GB G3				
A2	OP	AT cycles Output value with AT turned on			
A3	OQ	Output value with AT turned off Output value with AT turned off			
A3	GH	AT differential gap time			
A5	KC	Proportional band adjusting factor [heat-side]			
	KD				
A6 A7	KD KE	Integral time adjusting factor [heat-side] Derivative time adjusting factor [heat-side]			
	KF	Proportional band adjusting factor [cool-side]			
A8		Integral time adjusting factor [cool-side]			
A9	KG				
AA	KH	Derivative time adjusting factor [cool-side]			
AB	P6	Proportional band limiter (high) [heat-side]			
AC	P7	Proportional band limiter (low) [heat-side]			
AD	I6	Integral time limiter (high) [heat-side]			
AE	I7	Integral time limiter (low) [heat-side]			
AF	D6	Derivative time limiter (high) [heat-side]			
B0	D7	Derivative time limiter (low) [heat-side]			
B1	P8	Proportional band limiter (high) [cool-side]			
B2	P9	Proportional band limiter (low) [cool-side]			
B3	I8	Integral time limiter (high) [cool-side]			
B4	I9	Integral time limiter (low) [cool-side]			
B5	D8	Derivative time limiter (high) [cool-side]			
B6	D9	Derivative time limiter (low) [cool-side]			
B7	V2	Open/Close output neutral zone			
B8	VH	Open/Close output differential gap			
В9	SY	Action at feedback resistance (FBR) input error			
BA	FV	Feedback adjustment			
BB	TN	Control motor time			
BC	OI	Integrated output limiter			
BD	VS	Valve action at STOP			

Address	Identifier	Description		
BE	ST	Startup tuning (ST)		
BF	KI	ST proportional band adjusting factor		
C0	KJ	ST integral time adjusting factor		
C1	KK	ST derivative time adjusting factor		
C2	SU	ST start condition		
C3	Y7	Automatic temperature rise group		
C4	Y8	Automatic temperature rise learning		
C5	RT	Automatic temperature rise dead time		
C6	R2	Automatic temperature rise gradient data		
C7	GQ	RUN/STOP group		
C8	HU	Setting change rate limiter unit time		
C9	RU	Soak time unit		
CA	SH	Setting limiter (high)		
СВ	SL	Setting limiter (low)		
CC	TS	PV transfer function		
CD	DU	PV flashing display at input error		

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.3 HA Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-00E6.1F	0000-00E6	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

*3 32-bit device

Address	Identifier	Description			
00	M1	Input 1 measured value (PV1)			
01	M0	Input 2 measured value (PV2)			
02	M2	Feedback resistance input monitor			
03	M3	Current transformer 1 (CT1) input value monitor			
04	M4	Current transformer 2 (CT2) input value monitor			
05	MS	Input 1 setting-value(SV1) monitor			
06	MT	Input 2 setting-value(SV1) monitor			
07	S2	Remote setting (RS) input value monitor			
08	KH	Cascade monitor			
09	B1	Burnout state monitor of input 1			
0A	В0	Burnout state monitor of input 2			
0B	B2	Burnout state monitor of feedback resistance input			
0C	AA	Event 1 state monitor			
0D	AB	Event 2 state monitor			
0E	AC	Event 3 state monitor			
0F	AD	Event 4 state monitor			
10	AE	Heater break alarm 1 (HBA1) state			
11	AF	Heater break alarm 2 (HBA1) state			
12	O1	Nanipulated output value (MV1) of input 1			
13	O0	Manipulated output value (MV2) of input 2			
14	ER	Error code			
15	L1	Event input(DI) state			
16	L0	Operation mode state			
17	TR	Memory area soak time monitor			
18	G1	PID/AT transfer of input 1			
19	G0	PID/AT transfer of input 2			
1A	J1	Auto/Manual transfer of input 1			
1B	J0	Auto/Manual transfer of input 2			
1C	C1	Remote/Local transfer			
1D	SR	RUN/STOP transfer			
1E	ZA	Memory area transfer			
1F	A1	Event 1 set value			
20	A2	Event 2 set value			
21	A3	Event 3 set value			
22	A5	Control loop break alarm 1 (LBA1) time			

Address	Identifier	Description			
23	N1	LBA1 deadband			
24	A4	Event 4 set value			
25	A6	Control loop break alarm 2 (LBA2) time			
26	N2	LBA2 deadband			
27	S1	Set value (SV1) of input 1			
28	P1	Proportional band of input 1			
29	I1	Integral time of input 1			
2A	D1	Derivative time of input 1			
2B	CA	Control response parameter of input 1			
2C	S0	Set value (SV2) of input 2			
2D	P0	Proportional band of input 2			
2E	IO	Integral time of input 2			
2F	D0	Derivative time of input 2			
30	C9	Control response parameter of input 2			
31	НН	Setting change rate limiter (up) of input 1			
32	HL	Setting change rate limiter (down) of input 1 Setting change rate limiter (down) of input 1			
33					
	HX	Setting change rate limiter (up) of input 2			
34	HY	Setting change rate limiter (down) of input 2			
35	TM	Area soak time			
36	LP	Link area number			
37	A7	Heater break alarm 1 (HBA1) set value			
38	A8	Heater break alarm 2 (HBA2) set value			
39	PB	PV bias of input 1			
3A	F1	PV digital filter of input 1			
3B	PR	PV ratio of input 1			
3C	DP	PV low input cut-off of input 1			
3D	T0	Proportional cycle of input 1			
3E	ON	Manual output value of input 1			
3F	PA	PV bias of input 2			
40	F0	PV digital filter of input 2			
41	PQ	PV ratio of input 2			
42	DO	PV low input cut-off of input 2			
43	T2	Proportional cycle of input 2			
44	OM	Manual output value of input 2			
45	LK	Set lock level			
46	EM	EEPROM status			
47	EB	EEPROM mode			
48	NE	Heater break determination point 1			
49	NF	Heater melting determination point 1			
4A	NH	Heater break determination point 2			
4B	NI	Heater melting determination point 2			
4C	HP	Not used			
4D	HQ	Not used			
4E	HR	Not used			
4F	FP	Not used			
50	FQ	Not used			
51	FR	Not used			
52	IL	Not used			
53	AZ	Not used			
54	FS	Not used			
55	DX	STOP display selection			
56	DA	Bar graph display selection			
30	DΑ	Dai graph dispray selection			

Address	Identifier	Description		
57	DE	Bar graph display resolution		
58	DK	Auto/manual change key operation selection (A/M)		
59	DL	Remote/local change key operation selection (R/L)		
5A	DM	RUN/STOP change key operation selection (R/S)		
5B	XI	Input type selection of input 1		
5C	PU	Display unit selection of input 1		
5D	XU	Decimal-point position selection of input 1		
5E	XV	Input scale high-limit of input 1		
5F	XW	Input scale low-limit of input 1		
60	AV	Input abnormality determination point (High limit) of input 1		
61	AW	Input abnormality determination point (Low limit) of input 1		
62	BS	Burnout direction of input 1		
63	XH	Square root extraction selection of input 1		
64	JT	Power supply frequency selection		
65	XJ	Input type selection of input 2		
66	PT	Display unit selection of input 2		
67	XT	Decimal-point position selection of input 2		
68	XX	Input scale high-limit of input 2		
69	XY	Input scale low-limit of input 2		
6A	AX	Input abnormality determination point (High limit) of input 2		
6B	AY	Input abnormality determination point (Low limit) of input 2		
6C	BR	Burnout direction of input 2		
6D	XG	Square root extraction selection of input 2		
6E	H2	Event input logic selection		
6F	E0	Output logic selection		
70	TD	Output 1 timer setting		
71	TG	Output 2 timer setting		
72	TH	Output 3 timer setting		
73	TI	Output 4 timer setting		
74	TJ	Output 5 timer setting		
75	LA	Transmission output 1 type selection		
76	HV	Transmission output 1 type selection Transmission output 1 scale high		
77	HW	1 0		
		Transmission output 1 scale low		
78	LB	Transmission output 2 type selection		
79	CV	Transmission output 2 scale high		
7A	CW	Transmission output 2 scale low		
7B	LC	Transmission output 3 type selection		
7C	EV	Transmission output 3 scale high		
7D	EW	Transmission output 3 scale low		
7E	XA	Event 1 type selection Event 1 hold action		
7F	WA			
80	HA	Event 1 differential gap		
81	OA	Event 1 action at input error		
82	FA	Event 1 assignment		
83	XB	Event 2 type selection		
84	WB	Event 2 hold action		
85	HB	Event 2 differential gap		
86	OB	Event 2 action at input error		
87	FB	Event 2 assignment		
88	XC	Event 3 type selection		
89	WC	Event 3 hold action		
8A	HC	Event 3 differential gap		

Address	Identifier	Description			
8B	OC	Event 3 action at input error			
8C	FC	Event 3 assignment			
8D	XD	Event 4 type selection			
8E	WD	Event 4 hold action			
8F	HD	Event 4 differential gap			
90	OD	Event 4 action at input error			
91	FD	Event 4 assignment			
92	XR	CT1 ratio			
93	ZF	CT1 assignment			
94	XS	CT2 ratio			
95	ZG	CT2 assignment			
96	XN	Hot/Cold start selection			
97	KM	Usage selection of input 2			
98	RR	Cascade ratio			
99	RB	Cascade bias			
9A	XL	SV tracking selection			
9B	XE	Control action selection of input 1			
9C	PK	Integral/derivative time decimal point position selection of input 1			
9D	DG	Derivative gain of input 1			
9E	IV	ON/OFF action differential gap (upper) of input 1			
9F	IW	ON/OFF action differential gap (lower) of input 1			
A0	WH	Action (high) at input error of input 1			
A1	WL	Action (low) at input error of input 1			
A2	OE	Manipulated output value at input error of input 1			
A3	PH	Output change rate limiter (up) of input 1			
A4	PL	Output change rate limiter (down) of input 1 Output change rate limiter (down) of input 1			
A5	OH	Output change rate infiner (down) of input 1 Output limiter (high) of input 1			
A6	OL	Output limiter (low) of input 1			
A7	PF	Power feed forward selection of input 1			
A8	XF	Control action selection of input 2			
A9	PJ	Integral/derivative time decimal point position selection of input 2			
AA	DJ	Derivative gain of input 2			
AB	IX	ON/OFF action differential gap (upper) of input 2			
AC	IY	ON/OFF action differential gap (lower) of input 2			
AD	WX	Action (high) at input error of input 2			
AE	WY	Action (low) at input error of input 2			
AF	OF	Manipulated output value at input error of input 2			
B0	PX	Output change rate limiter (up) of input 2			
B1	PY	Output change rate limiter (down) of input 2			
B2	OX	Output limiter (high) of input 2			
B3	OY	Output limiter (low) of input 2			
B3	PG	Power feed forward selection of input 2			
B5	GB	AT bias of input 1			
B6	G3	AT cycles of input 1			
B7	GH	AT differential gap time of input 1			
B8	GA	AT bias of input 2			
B9	GA G2	AT cycles of input 2			
BA	GG	AT cycles of input 2 AT differential gap time of input 2			
BB	V2	Open/Close output neutral zone			
BC	VH	Open/Close output differential gap			
BD	SY	Action at feedback resistance (FBR) input error			
BE	FV	Feedback adjustment			
DL	1 7	r conouch aujustinoiti			

Address	Identifier	Description			
BF	HU	Setting change rate limiter unit time			
C0	RU	Soak time unit			
C1	SH	Setting limiter (high) of input 1			
C2	SL	Setting limiter (low) of input 1			
C3	ST	Setting limiter (high) of input 2			
C4	SU	Setting limiter (low) of input 2			
C5	VR	ROM version			
C6	UT	Integrated operating time			
C7	Нр	Holding peak value ambient temperature			
C8	HM	Power feed forward input value			
C9	VG	Feedback resistance (FBR) input assignment			
CA	PZ	Power feed forward gain of input 1			
СВ	PW	Power feed forward gain of input 2			
CC	ND	Heater break alarm 1 (HBA1) type			
CD	DH	Number of heater break alarm 1 (HBA1) delay times			
CE	NG	Heater break alarm 2 (HBA2) type			
CF	DF	Number of heater break alarm 2 (HBA2) delay times			
D0	LY	Alarm (ALM) lamp lighting condition 1			
D1	LZ	Alarm (ALM) lamp lighting condition 2			
D2	HT	Not used			
D3	FT	Not used			
D4	OG	Not used			
D5	LI	Not used			
D6	OR	Not used			
D7	TS	Not used			
D8	US	Not used			
D9	RH	Not used			
DA	RL	Not used			
DB	RP	Not used			
DC	JI	Not used			
DD	JJ	Not used			
DE	OI	Not used			
DF	OJ	Not used			
E0	QA	Not used			
E1	OT	Not used			
E2	OU	Not used			
E3	MY	Not used			
E4	NY	Not used			
E5	MZ	Not used			
E6	NZ	Not used			

• Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.4 MA Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-002A.F	0000-002A	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

Address	Identifier	Description			
00	M1	Measured value (PV)			
01	M2	Current transformer 1 input value			
02	M3	Current transformer 2 input value			
03	MS	Set value monitor			
04	B1	Burnout			
05	AA	Alarm 1 status			
06	AB	Alarm 2 status			
07	AC	Alarm 3 status			
08	AJ	Output status			
09	01	Manipulated output value			
0A	O2	Cool-side manipulated output value			
0B	ER	Error code			
0C	L1	DI status			
0D	ZA	Memory area number selection			
0E	S1	Set value (SV)			
0F	A1	Alarm 1			
10	N1	Control loop break alarm deadband (LBD)			
11	A2	Alarm 2			
12	N2	Heater break alarm 2 (HBA2)			
13	A3	Alarm 3			
14	P1	Proportional band			
15	P2	Cool-side proportional band			
16	I1	Integral time			
17	D1	Derivative time			
18	W1	Anti-reset windup			
19	V1	Overlap/deadband			
1A	НН	Setting change rate limiter			
1B	EI	Used/unused of channels			
1C	SR	RUN/STOP transfer			
1D	G1	PID/AT selection			
1E	PB	PV bias			
1F	F1	Digital filter			
20	T0	Proportioning cycle time			
21	T1	Cool-side proportioning cycle time			
22	TL	Scan interval time			

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
23	IP	Device address
24	IR	Communication speed
25	IQ	Data bit configuration
26	IT	Interval time
27	EB	EEPROM storage mode
28	EM	EEPROM storage status
29	LK	Lock level 1
2A	LL	Lock level 2

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
- Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.5 SRV Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-0085.1F	0000-0085	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

Address	Identifier	Description
00	M1(ch1)	CH1 Measured-value (PV)
01	M1(ch2)	CH2 Measured-value (PV)
02	AJ(ch1)	CH1 Overall event status
03	AJ(ch2)	CH2 Overall event status
04	B1(ch1)	CH1 Burnout state
05	B1(ch2)	CH2 Burnout state
06	AA(ch1)	CH1 Event 1 state
07	AA(ch2)	CH2 Event 1 state
08	AB(ch1)	CH1 Event 2 state
09	AB(ch2)	CH2 Event 2 state
0A	AC(ch1)	CH1 Heater break alarm (HBA) state
0B	AC(ch2)	CH2 Heater break alarm (HBA) state
0C	AP(ch1)	CH1 Control loop break alarm (LBA) state
0D	AP(ch2)	CH2 Control loop break alarm (LBA) state
0E	O1(ch1)	CH1 Manipulated output value[heat-side]
0F	O1(ch2)	CH2 Manipulated output value[heat-side]
10	O2(ch1)	CH1 Manipulated output value[cool-side]
11	O2(ch2)	CH2 Manipulated output value[cool-side]
12	M3(ch1)	CH1 CT input measured value
13	M3(ch2)	CH2 CT input measured value
14	MS(ch1)	CH1 Set-value monitoring
15	MS(ch2)	CH2 Set-value monitoring
16	ER	Error code
17	HE(ch1)	CH1 Temperature rise completion status
18	HE(ch2)	CH2 Temperature rise completion status
19	S1(ch1)	CH1 Set value (SV)
1A	S1(ch2)	CH2 Set value (SV)
1B	P1(ch1)	CH1 Proportional band [heat-side]
1C	P1(ch2)	CH2 Proportional band [heat-side]
1D	P2(ch1)	CH1 Proportional band [cool-side]
1E	P2(ch2)	CH2 Proportional band [cool-side]
1F	I1(ch1)	CH1 Integral time
20	I1(ch2)	CH2 Integral time
21	D1(ch1)	CH1 Derivative time

Address	Identifier	Description	
22	D1(ch2)	CH2 Derivative time	
23	CA(ch1)	CH1 Control response designation parameter	
24	CA(ch2)	CH2 Control response designation parameter	
25	V1(ch1)	CH1 Overlap/Deadband	
26	V1(ch2)	CH2 Overlap/Deadband	
27	HH(ch1)	CH1 Setting change rate limiter	
28	HH(ch2)	CH2 Setting change rate limiter	
29	PB(ch1)	CH1 PV bias	
2A	PB(ch2)	CH2 PV bias	
2B	A1(ch1)	CH1 Event 1 setting value	
2C	A1(ch2)	CH2 Event 1 setting value	
2D	A2(ch1)	CH1 Event 2 setting value	
2E	A2(ch2)	CH2 Event 2 setting value	
2F	EI(ch1)	CH1 Operation mode	
30	EI(ch2)	CH2 Operation mode	
31	G1(ch1)	CH1 PID/AT transfer	
32	G1(ch1)	CH2 PID/AT transfer	
33	J1(ch1)	CH1 Auto/Manual transfer	
	` '	CH2 Auto/Manual transfer	
34	J1(ch2)		
35	ON(ch1)	CH1 Manual output value	
36	ON(ch2)	CH2 Manual output value	
37	OH(ch1)	CH1 Output limiter (high)	
38	OH(ch2)	CH2 Output limiter (high)	
39	OL(ch1)	CH1 Output limiter (low)	
3A	OL(ch2)	CH2 Output limiter (low)	
3B	T0(ch1)	CH1 Proportioning cycle (heat-side)	
3C	T0(ch2)	CH2 Proportioning cycle (heat-side)	
3D	T1(ch1)	CH1 Proportioning cycle (cool-side)	
3E	T1(ch2)	CH2 Proportioning cycle (cool-side)	
3F	F1(ch1)	CH1 digital filter	
40	F1(ch2)	CH2 digital filter	
41	A3(ch1)	CH1 Heater break alarm (HBA) set value	
42	A3(ch2)	CH2 Heater break alarm (HBA) set value	
43	DH(ch1)	CH1 Number of heater break alarm (HBA) delay times	
44	DH(ch2)	CH2 Number of heater break alarm (HBA) delay times	
45	SR	Control RUN/STOP transfer	
46	AV(ch1)	CH1 Input error determination point (high)	
47	AV(ch2)	CH2 Input error determination point (high)	
48	AW(ch1)	CH1 Input error determination point (low)	
49	AW(ch2)	CH2 Input error determination point (low)	
4A	WH(ch1)	CH1 Action (high) at input error	
4B	WH(ch2)	CH2 Action (high) at input error	
4C	WL(ch1)	CH1 Action (low) at input error	
4D	WL(ch2)	CH2 Action (low) at input error	
4E	OE(ch1)	CH1 Manipulated output value at input error	
4F	OE(ch2)	CH2 Manipulated output value at input error	
50	GH(ch1)	CH1 AT differential gap time	
51	GH(ch2)	CH2 AT differential gap time	
52	GB(ch1)	CH1 AT bias	
53	GB(ch2)	CH2 AT bias	
54	XH	Event LED mode set	
55	HP(ch1)	CH1 Control loop break alarm (LBA) usage selection	
	111 (0111)	CITE COMMOT TOOP OF CHILD MARKET DESCRIPTION	

Address	Identifier	Description	
56	HP(ch2)	CH2 Control loop break alarm (LBA) usage selection	
57	C6(ch1)	CH1 Control loop break alarm (LBA) time	
58	C6(ch2)	CH2 Control loop break alarm (LBA) time	
59	V2(ch1)	CH1 Control loop break alarm (LBA) deadband	
5A	V2(ch2)	CH2 Control loop break alarm (LBA) deadband	
5B	E1	DI set	
5C	L1	DI status	
5D	QA	DO1 set	
5E	QB	DO2 set	
5F	Q1	DO status	
60	AR	Event interlock release	
61	HD(ch1)	CH1 Temperature rise completion range	
62	HD(ch2)	CH2 Temperature rise completion range	
63	T3(ch1)	CH1 Temperature rise completion soak time	
64	T3(ch2)	CH2 Temperature rise completion soak time	
65	IN	Initial set mode	
66	XI(ch1)	CH1 Input range number	
67	XI(ch2)	CH2 Input range number	
68	XV(ch1)	CH1 Input scale high	
69	XV(ch2)	CH2 Input scale high	
6A	XW(ch1)	CH1 Input scale low	
6B	XW(ch2)	CH2 Input scale low	
6C	XU(ch1)	CH1 Input range decimal point position	
6D	XU(ch2)	CH2 Input range decimal point position	
6E	PU(ch1)	CH1 Temperature unit selection	
6F	PU(ch2)	CH2 Temperature unit selection	
70	XE(ch1)	CH1 Control type	
71	XE(ch2)	CH2 Control type	
72	IV(ch1)	CH1 ON/OFF action differential gap (upper)	
73	IV(ch2)	CH2 ON/OFF action differential gap (upper)	
74	IW(ch1)	CH1 ON/OFF action differential gap (lower)	
75	IW(ch2)	CH2 ON/OFF action differential gap (lower)	
76	HA(ch1)	CH1 Event 1 differential gap	
77	HA(ch2)	CH2 Event 1 differential gap	
78	HB(ch1)	CH1 Event 2 differential gap	
79	HB(ch2)	CH2 Event 2 differential gap	
7A	XA(ch1)	CH1 Event 1 type	
7B	XA(ch2)	CH2 Event 1 type	
7C	XB(ch1)	CH1 Event 2 type	
7D	XB(ch2)	CH2 Event 2 type	
7E	WA(ch1)	CH1 Event 1 action	
7F	WA(ch2)	CH2 Event 1 action	
80	WB(ch1)	CH1 Event 2 action	
81	WB(ch2)	CH2 Event 2 action	
82	TD(ch1)	CH1 Event delay timer	
83	TD(ch2)	CH2 Event delay timer	
84	ZX	Transmission transfer time setting	
85	X2	Transfer mode hold setting	

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.6 SRX Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-008C.1F	0000-008C	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

Address	Identifier	Description
00	M1(ch1)	CH1 Measured-value (PV)
01	M1(ch2)	CH2 Measured-value (PV)
02	AJ(ch1)	CH1 Overall event status
03	AJ(ch2)	CH2 Overall event status
04	B1(ch1)	CH1 Burnout state
05	B1(ch2)	CH2 Burnout state
06	AA(ch1)	CH1 Event 1 state
07	AA(ch2)	CH2 Event 1 state
08	AB(ch1)	CH1 Event 2 state
09	AB(ch2)	CH2 Event 2 state
0A	AC(ch1)	CH1 Heater break alarm (HBA) state
0B	AC(ch2)	CH2 Heater break alarm (HBA) state
0C	AP(ch1)	CH1 Control loop break alarm (LBA) state
0D	AP(ch2)	CH2 Control loop break alarm (LBA) state
0E	O1(ch1)	CH1 Manipulated output value
0F	O1(ch2)	CH2 Manipulated output value
10	M3(ch1)	CH1 CT input measured value
11	M3(ch2)	CH2 CT input measured value
12	MS(ch1)	CH1 Set-value monitoring
13	MS(ch2)	CH2 Set-value monitoring
14	ER	Error code
15	S1(ch1)	CH1 Set value (SV)
16	S1(ch2)	CH2 Set value (SV)
17	P1(ch1)	CH1 Proportional band
18	P1(ch2)	CH2 Proportional band
19	I1(ch1)	CH1 Integral time
1A	I1(ch2)	CH2 Integral time
1B	D1(ch1)	CH1 Derivative time
1C	D1(ch2)	CH2 Derivative time
1D	CA(ch1)	CH1 Control response designation parameter
1E	CA(ch2)	CH2 Control response designation parameter
1F	PB(ch1)	CH1 PV bias
20	PB(ch2)	CH2 PV bias
21	A1(ch1)	CH1 Event 1 setting value

Address	Identifier	Description		
22	A1(ch2)	CH2 Event 1 setting value		
23	A2(ch1)	CH1 Event 2 setting value		
24	A2(ch2)	CH2 Event 2 setting value		
25	EI(ch1)	CH1 Operation mode		
26	EI(ch2)	CH2 Operation mode		
27	G1(ch1)	CH1 PID/AT transfer		
28	G1(ch2)	CH2 PID/AT transfer		
29	J1(ch1)	CH1 Auto/Manual transfer		
2A	J1(ch2)	CH2 Auto/Manual transfer		
2B	ON(ch1)	CH1 Manual output value		
2C	ON(ch2)	CH2 Manual output value		
2D	OH(ch1)	CH1 Output limiter (high)		
2E	OH(ch2)	CH2 Output limiter (high)		
2F	OL(ch1)	CH1 Output limiter (low)		
30	OL(ch2)	CH2 Output limiter (low)		
31	T0(ch1)	CH1 Proportioning cycle		
32	` ′	CH2 Proportioning cycle		
	T0(ch2)			
33	F1(ch1)	CH1 digital filter		
34	F1(ch2)	CH2 digital filter		
35	A3(ch1)	CH1 Heater break alarm (HBA) set value		
36	A3(ch2)	CH2 Heater break alarm (HBA) set value		
37	DH(ch1)	CH1 Number of heater break alarm (HBA) delay times		
38	DH(ch2)	CH2 Number of heater break alarm (HBA) delay times		
39	XN(ch1)	CH1 Hot/Cold start selection		
3A	XN(ch2)	CH2 Hot/Cold start selection		
3B	SX(ch1)	CH1 Start determination point		
3C	SX(ch2)	CH2 Start determination point		
3D	SR	Control RUN/STOP transfer		
3E	AV(ch1)	CH1 Input error determination point (high)		
3F	AV(ch2)	CH2 Input error determination point (high)		
40	AW(ch1)	CH1 Input error determination point (low)		
41	AW(ch2)	CH2 Input error determination point (low)		
42	WH(ch1)	CH1 Action (high) at input error		
43	WH(ch2)	CH2 Action (high) at input error		
44	WL(ch1)	CH1 Action (low) at input error		
45	WL(ch2)	CH2 Action (low) at input error		
46	OE(ch1)	CH1 Manipulated output value at input error		
47	OE(ch2)	CH2 Manipulated output value at input error		
48	GH(ch1)	CH1 AT differential gap time		
49	GH(ch2)	CH2 AT differential gap time		
4A	GB(ch1)	CH1 AT bias		
4B	GB(ch2)	CH2 AT bias		
4C	C1	Remote/Local transfer		
4D	XH	Event LED mode set		
4E	E1(ch1)	CH1 Digital input setting 1 (RESET)		
4F	E1(ch2)	CH2 Digital input setting 1 (RESET)		
50	E2(ch1)	CH1 Digital input setting 2 (RUN)		
51	E2(ch2)	CH2 Digital input setting 2 (RUN)		
52	E3(ch1)	CH1 Digital input setting 3 (FIX)		
53	E3(ch2)	CH2 Digital input setting 3 (FIX)		
54	E4(ch1)	CH1 Digital input setting 4 (MAN)		
55	E4(ch2)	CH2 Digital input setting 4 (MAN)		
JJ	E4(CHZ)	C112 Digital input setting + (MAIN)		

Address	Identifier	Description		
56	E5(ch1)	CH1 Digital input setting 5 (HOLD)		
57	E5(ch2)	CH2 Digital input setting 5 (HOLD)		
58	E6(ch1)	CH1 Digital input setting 6 (STEP)		
59	E6(ch2)	CH2 Digital input setting 6 (STEP)		
5A	E7(ch1)	CH1 Digital input setting 7 (Program pattern selection)		
5B	E7(ch2)	CH2 Digital input setting 7 (Program pattern selection)		
5C	E8(ch1)	CH1 Digital input setting 8 (AT/PID)		
5D	E8(ch2)	CH2 Digital input setting 8 (AT/PID)		
5E	HP(ch1)	CH1 Control loop break alarm (LBA) usage selection		
5F	HP(ch2)	CH2 Control loop break alarm (LBA) usage selection		
60	C6(ch1)	CH1 Control loop break alarm (LBA) time		
61	C6(ch2)	CH2 Control loop break alarm (LBA) time		
62	V2(ch1)	CH1 Control loop break alarm (LBA) deadband		
63	V2(ch2)	CH2 Control loop break alarm (LBA) deadband		
64	PK(ch1)	CH1 Integral/Derivative time decimal point position		
65		CH2 Integral/Derivative time decimal point position		
	PK(ch2)	Initial set mode		
66	IN VI(ch1)	CH1 Input range number		
67	XI(ch1)	1 0		
68	XI(ch2)	CH2 Input range number		
69	XV(ch1)	CH1 Input scale high		
6A	XV(ch2)	CH2 Input scale high		
6B	XW(ch1)	CH1 Input scale low		
6C	XW(ch2)	CH2 Input scale low		
6D	XU(ch1)	CH1 Input range decimal point position		
6E	XU(ch2)	CH2 Input range decimal point position		
6F	PU(ch1)	CH1 Temperature unit selection		
70	PU(ch2)	CH2 Temperature unit selection		
71	XE(ch1)	CH1 Control type		
72	XE(ch2)	CH2 Control type		
73	IV(ch1)	CH1 ON/OFF action differential gap (upper)		
74	IV(ch2)	CH2 ON/OFF action differential gap (upper)		
75	IW(ch1)	CH1 ON/OFF action differential gap (lower)		
76	IW(ch2)	CH2 ON/OFF action differential gap (lower)		
77	HA(ch1)	CH1 Event 1 differential gap		
78	HA(ch2)	CH2 Event 1 differential gap		
79	HB(ch1)	CH1 Event 2 differential gap		
7A	HB(ch2)	CH2 Event 2 differential gap		
7B	XA(ch1)	CH1 Event 1 type		
7C	XA(ch2)	CH2 Event 1 type		
7D	XB(ch1)	CH1 Event 2 type		
7E	XB(ch2)	CH2 Event 2 type		
7F	WA(ch1)	CH1 Event 1 action		
80	WA(ch2)	CH2 Event 1 action		
81	WB(ch1)	CH1 Event 2 action		
82	WB(ch2)	CH2 Event 2 action		
83	DF(ch1)	CH1 Event delay frequency		
84	DF(ch2)	CH2 Event delay frequency		
85	ZX	Transmission transfer time setting		
86	XP(ch1)	CH1 Segment time unit setting		
87	XP(ch2)	CH2 Segment time unit setting		
	X2	Transfer mode hold setting		
88	ΛL	Transfer mode note setting		

Address	Identifier	Description
8A	PH(ch2)	CH2 Change rate limiter(up) of output
8B	PL(ch1)	CH1 Change rate limiter(down) of output
8C	PL(ch2)	CH2 Change rate limiter(down) of output

• Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.7 SA Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-001E.F	0000-001E	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

Address	Identifier	Description
00	M1	Measured value(PV)
01	B1	Burnout
02	AA	Alarm 1 status
03	AB	Alarm 2 status
04	O1	Heat-side manipulated output value
05	O2	Cool-side manipulated output value
06	ER	Error code
07	SR	RUN/STOP function
08	G1	Autotuning
09	G2	Self-tuning
0A	S1	Set value (SV)
0B	A1	Alarm 1 set value
0C	A2	Alarm 2 set value
0D	A5	Control loop break alarm
0E	A6	Control loop break alarm deadband
0F	P1	Heat-side proportional band (P)
10	I1	Integral time (I)
11	D1	Derivative time (D)
12	W1	Anti-reset windup
13	T0	Heat-side proportioning cycle time
14	P2	Cool-side proportional band
15	V1	Overlap/deadband
16	T1	Cool-side proportioning cycle time
17	PB	PV bias
18	F1	Digital filter
19	LK	Set data lock function
1A	EB	EEPROM storage mode
1B	EM	EEPROM storage status
1C	LA	Analog output specification selection
1D	HV	Analog output scale high
1E	HW	Analog output scale low

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
- Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.8 SR Mini HG(H-PCP-A/B) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	01/0000.0-01/0055.F	01/0000-01/0055		
	02/0000.0-02/0055.F	02/0000-02/0055		
	03/0000.0-03/0055.F	03/0000-03/0055		
	04/0000.0-04/0055.F	04/0000-04/0055		
	05/0000.0-05/0055.F	05/0000-05/0055		
	06/0000.0-06/0055.F	06/0000-06/0055		
	07/0000.0-07/0055.F	07/0000-07/0055	0055 0055 0055 0055 0055 0055 0055	
	08/0000.0-08/0055.F	08/0000-08/0055		*1 *2 *3
	09/0000.0-09/0055.F	09/0000-09/0055		
Communication identifier	10/0000.0-10/0055.F	10/0000-10/0055		
Communication identifier	11/0000.0-11/0055.F	11/0000-11/0055		
	12/0000.0-12/0055.F	12/0000-12/0055		
	13/0000.0-13/0055.F	13/0000-13/0055		
	14/0000.0-14/0055.F	14/0000-14/0055		
	15/0000.0-15/0055.F	15/0000-15/0055		
	16/0000.0-16/0055.F	16/0000-16/0055		
	17/0000.0-17/0055.F	000.0-17/0055.F 17/0000-17/0055		
	18/0000.0-18/0055.F	18/0000-18/0055		
	19/0000.0-19/0055.F 19/0000-19/0055			
	20/0000.0-20/0055.F	20/0000-20/0055		

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

01/0000 Channel number (Setting range: 01 to 20)

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

^{*3} It is necessary to specify the channel number for a module supported by the identifier about SR-Mini-HG (H-PCP-A/B) and SR-Mini-HG (H-PCP-J) Series.

Address	Identifier	Description
00	M1	Temperature measured value
01	AA	Alarm 1 status
02	AB	Alarm 2 status
03	B1	Burnout status
04	O1	Heat-side manipulated output value
05	O2	Cool-side manipulated output value
06	AC	Heater break alarm status
07	M3	Current transformer input measured value 1
08	M4	Current transformer input measured value 2
09	MS	Set value monitor
0A	HE	Temperature rise completion status
0B	ER	Error code
0C	G1	PID/AT transfer
0D	S1	Temperature set value
0E	P1	Heat-side proportional band
0F	P2	Cool-side proportional band
10	I1	Integral time
11	D1	Derivative time
12	V1	Overlap/deadband
13	CA	Control response parameters
14	A1	Alarm 1 set value
15	A2	Alarm 2 set value
16	A3	Heater break alarm set value 1
17	A4	Heater break alarm set value 2
18	EI	Operation mode transfer
19	T0	Heat-side proportioning cycle time
1A	T1	Cool-side proportioning cycle time
1B	PB	PV bias
1C	SR	Control RUN/STOP transfer
1D	IN	Initial setting mode
1E	ZA	Memory area number
1F	AR	Alarm interlock release
20	J1	Auto/Manual transfer
21	ON	Manual output value
22	HD	Temperature rise completion range
23	HS	Temperature rise completion trigger
24	Т3	Temperature rise completion soak time
25	M5	AI measured value
26	AD	AI alarm 1 status
27	AE	AI alarm 2 status
28	A5	AI alarm 1 set value
29	A6	AI alarm 2 set value
2A	JI	AI zero point correction
2B	JJ	AI full scale correction
2C	NJ	AI operation mode transfer
2D	AP	Control loop break alarm (LBA) status
2E	HP	LBA use selection
2F	C6	LBA time
30	V2	LBA deadband
31	M6	AO output value monitor
32	S6	AO output set value
		- · · · I · · · · · · · · · · · · · · ·

Address	Identifier	Description
33	XO	AO function selection
34	OY	AO corresponding channel setting
35	CV	AO zooming high limit
36	CW	AO zooming low limit
37	JK	AO zero point correction
38	JL	AO full scale correction
39	L1	DI module input status (DI-A module)
3A	C2	CC-Link selecting flag
3B	Q3	Event DO status (DO-C module)
3C	Q4	Event DO manual output value (DO-C module)
3D	A7	Event DO extension alarm set value
3E	KH	Cascade monitor
3F	KF	Cascade ON/OFF
40	KG	Cascade gain
41	KI	Cascade bias
42	M7	TI measured value
43	AF	TI alarm 1 status
44	AG	TI alarm 2 status
45	B2	TI burnout status
46	A8	TI alarm 1 set value
47	A9	TI alarm 2 set value
48	PC	TI PV bias
49	EJ	TI operation mode transfer
4A	L3	PCP module DI status
4B	L4	Event DI contact input monitor (DI-B module)
4C	L5	Event DI logic input monitor
4D	Q5	Event DI logic output monitor
4E	AH	CT module heater break alarm status
4F	AJ	Comprehensive alarm status
50	M8	Positioning monitor
51	V3	Positioning output neutral zone
52	TJ	Motor time
53	OS	Integrated output limite
54	00	Manual positioning output value
55	C1	Local/Computer transfer

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.9 SR Mini HG(H-PCP-J) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	01/0000.0-01/0055.F	01/0000-01/0055		
	02/0000.0-02/0055.F	02/0000-02/0055		
	03/0000.0-03/0055.F	03/0000-03/0055		
	04/0000.0-04/0055.F	04/0000-04/0055		
	05/0000.0-05/0055.F	05/0000-05/0055		
	06/0000.0-06/0055.F	06/0000-06/0055		
	07/0000.0-07/0055.F	07/0000-07/0055		
	08/0000.0-08/0055.F	000.0-08/0055.F 08/0000-08/0055		*1 *2 *3
	09/0000.0-09/0055.F	09/0000-09/0055	= [L/H] *1 *2 *	
Communication identifier	10/0000.0-10/0055.F	10/0000-10/0055		
Communication identifier	11/0000.0-11/0055.F	11/0000-11/0055		
	12/0000.0-12/0055.F	12/0000-12/0055		
	13/0000.0-13/0055.F	13/0000-13/0055		
	14/0000.0-14/0055.F	14/0000-14/0055		
	15/0000.0-15/0055.F	15/0000-15/0055		
	16/0000.0-16/0055.F 16/0000-16/0055 17/0000.0-17/0055.F 17/0000-17/0055			
	18/0000.0-18/0055.F	18/0000-18/0055		
	19/0000.0-19/0055.F	19/0000-19/0055		
	20/0000.0-20/0055.F	20/0000-20/0055		

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

01/0000 Channel number (Setting range: 01 to 20)

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

^{*3} It is necessary to specify the channel number for a module supported by the identifier about SR-Mini-HG (H-PCP-A/B) and SR-Mini-HG (H-PCP-J) Series.

Address	Identifier	Description		
00	M1	Temperature measured value (PV) [H-TIO-□, H-CIO-A] / Motor speed measured value [H-SIO-A]		
01	AA	Alarm 1 status [H-TIO-□, H-CIO-A, H-SIO-A]		
02	AB	Alarm 2 status [H-TIO-□, H-CIO-A, H-SIO-A]		
03	B1	Burnout status [H-TIO-□, H-CIO-A, H-SIO-A]		
04	O1	Heat-side manipulated output value [H-TIO-□, H-CIO-A]		
05	O2	Cool-side manipulated output value [H-TIO-□, H-CIO-A]		
06	AC	Heater break alarm status [H-TIO-A/C/D, H-CIO-A]		
07	M3	Current transformer input measured value 1 [H-TIO-A/C/D]		
08	M4	Current transformer input measured value 2 [H-CT-A]		
09	MS	Set value monitor [H-TIO-□, H-CIO-A, H-SIO-A]		
0A	HE	Temperature rise completion status [H-TIO-□, H-CIO-A]		
0B	ER	Error code [H-PCP-J]		
0C	G1	PID/AT transfer [H-TIO-□, H-CIO-A, H-SIO-A]		
0D	S1	Temperature set value (SV) [H-TIO-□, H-CIO-A] / Motor speed set value [H-SIO-A]		
0E	P1	Heat-side proportional band [H-TIO-□, H-CIO-A, H-SIO-A]		
0F	P2	Cool-side proportional band [H-TIO-□, H-CIO-A]		
10	I1	Integral time [H-TIO-□, H-CIO-A, H-SIO-A]		
11	D1	Derivative time [H-TIO-□, H-CIO-A, H-SIO-A]		
12	V1	Overlap/deadband [H-TIO-□, H-CIO-A]		
13	CA	Control response parameters [H-TIO-\(\sigma\), H-CIO-A, H-SIO-A]		
14	A1	Alarm 1 set value [H-TIO-□, H-CIO-A, H-SIO-A]		
15	A2	Alarm 2 set value [H-TIO-□, H-CIO-A, H-SIO-A]		
16	A3	Heater break alarm set value 1 [H-TIO-A/C/D]		
17	A4	Heater break alarm set value 2 [H-CT-A]		
18	EI	Operation mode transfer [H-TIO-□, H-CIO-A, H-SIO-A]		
19	T0	Heat-side proportioning cycle time [H-TIO-□, H-CIO-A]		
1A	T1	Cool-side proportioning cycle time [H-TIO-□, H-CIO-A]		
1B	PB	PV bias [H-TIO-□, H-CIO-A, H-SIO-A]		
1C	SR	Control RUN/STOP transfer [H-PCP-J]		
1D	IN	Initial setting mode [H-PCP-J]		
1E	ZA	Memory area number [H-TIO-□, H-CIO-A, H-SIO-A]		
1F	AR	Alarm interlock release [H-TIO- \square , H-CIO-A, H-TI- \square , H-AI- \square]		
20	J1	Auto/Manual transfer [H-TIO- \square , H-CIO-A]		
21	ON	Manual output value [H-TIO-□, H-CIO-A]		
22	HD	Temperature rise completion range [H-TIO-□, H-CIO-A]		
23	HS	Temperature rise completion trigger [H-TIO- \Box , H-CIO-A]		
24	T3	Temperature rise completion soak time [H-TIO- \square , H-CIO-A]		
25	M5	AI measured value [H-AI-A/B]		
26	AD	AI alarm 1 status [H-AI-A/B]		
27	AE	AI alarm 2 status [H-AI-A/B]		
28	A5	AI alarm 1 set value [H-AI-A/B]		
29	A6	AI alarm 2 set value [H-AI-A/B]		
2A	JI	AI zero point correction [H-AI-A/B]		
2B	JJ	AI full scale correction [H-AI-A/B]		
2B 2C	NJ	AI run scare correction [n-AI-A/B] AI operation mode transfer [H-AI-A/B]		
2C 2D	AP	Control loop break alarm (LBA) status [H-TIO-\(\pi\), H-CIO-A]		
2E	HP C6	LBA use selection [H-TIO- \square , H-CIO-A]		
2F	C6	LBA time [H-TIO-□, H-CIO-A]		
30	V2	LBA deadband [H-TIO-□, H-CIO-A]		
31	M6	AO output value monitor [H-AO-A/B]		
32	S6	AO output set value [H-AO-A/B]		

Address	Identifier	Description
33	XO	AO function selection [H-AO-A/B]
34	OY	AO corresponding channel setting [H-AO-A/B]
35	CV	AO zooming high limit [H-AO-A/B]
36	CW	AO zooming low limit [H-AO-A/B]
37	JK	AO zero point correction [H-AO-A/B]
38	JL	AO full scale correction [H-AO-A/B]
39	L1	H-DI-A module input status [H-DI-A]
3A	C2	CC-Link selecting flag
3B	Q3	Event DO status [H-DO-C]
3C	Q4	Event DO manual output value [H-DO-C]
3D	A7	Event DO extension alarm set value [H-DO-C]
3E	KH	Cascade monitor [H-CIO-A]
3F	KF	Cascade ON/OFF [H-CIO-A]
40	KG	Cascade gain [H-CIO-A]
41	KI	Cascade bias [H-CIO-A]
42	M7	TI measured value [H-TI-A/B/C]
43	AF	TI alarm 1 status [H-TI-A/B/C]
44	AG	TI alarm 2 status [H-TI-A/B/C]
45	B2	TI burnout status [H-TI-A/B/C]
46	A8	TI alarm 1 set value [H-TI-A/B/C]
47	A9	TI alarm 2 set value [H-TI-A/B/C]
48	PC	TI PV bias [H-TI-A/B/C]
49	EJ	TI operation mode transfer [H-TI-A/B/C]
4A	L3	PCP module DI status
4B	L4	Event DI contact input monitor [H-DI-B]
4C	L5	Event DI logic input monitor [H-DI-B]
4D	Q5	Event DI logic output monitor [H-DI-B]
4E	AH	H-CT-A module heater break alarm status [H-CT-A]
4F	AJ	Comprehensive alarm status [H-PCP-J]
50	M8	Positioning monitor [H-TIO-K]
51	V3	Positioning output neutral zone [H-TIO-K]
52	TJ	Motor time [H-TIO-K]
53	OS	Integrated output limiter [H-TIO-K]
54	OO	Manual positioning output value [H-TIO-K]
55	C1	Local/Computer transfer

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.10 REX-F9000 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-002F.1F	0000-002F	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

Address	Identifier	Description
00	M1	Measured-value(PV)
01	AA	First alarm output
02	AB	Second alarm output
03	O1	Manipulated output value(MV)
04	B1	Burnout
05	ER	Error code
06	G1	PID/AT transferPID control/auto-tuning transfer
07	J1	Auto/Manual transfer
08	SR	Operation execution (RUN)/STOP transfer
09	S1	Set value (SV)
0A	A1	First alarm setting
0B	A2	Second alarm setting
0C	P1	Proportional band
0D	I1	Integral time
0E	D1	Derivative time
0F	CA	Control response designation parameter
10	PB	PV bias
11	PC	Sensor bias
12	F1	digital filter
13	OH	Output limit (High limit)
14	OL	Output limit (Low limit)
15	GB	AT bias
16	HA	First alarm differential gap
17	TD	First alarm timer setting
18	HB	Second alarm differential gap
19	TG	Second alarm timer setting
1A	LA	Analog output Specification selection
1B	HV	Analog output Scale high limit
1C	HW	Analog output Scale low limit
1D	DA	Bar-graph display selection
1E	XI	Input type selection
1F	XU	Decimal-point position selection
20	JT	Power supply frequency
21	SH	Setting limit (High limit)

Address	Identifier	Description
22	SL	Setting limit (Low limit)
23	T0	Proportioning cycle(OUT1)
24	XE	Direct/reverse action selection
25	PF	Power feed forward
26	XA	Alarm 1 type selection
27	NA	First alarm Energized/de-energized selection
28	OA	First alarm Action selection at input abnormality
29	WA	First alarm Hold action selection
2A	XB	Alarm 2 type selection
2B	NB	Second alarm Energized/de-energized selection
2C	OB	Second alarm Action selection at input abnormality
2D	WB	Second alarm Hold action selection
2E	LK	Set data lock level
2F	LM	Mode lock level selection

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
- Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.11 REX-F Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-0055.F	0000-0055	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

Address	Identifier	Description
00	M1	Measured-value (PV) input
01	AA	First alarm output
02	AB	Second alarm output
03	AC	Heater break alarm output
04	O1	Manipulated output (Heating-side)
05	O2	Manipulated output (Cooling-side)
06	B1	Burnout
07	B2	Feedback resistance (FBR) input burnout
08	S2	Remote setting value (RS)
09	M2	Feedback resistance input value (POS)
0A	M3	Current transformer input value
0B	MS	Set-value (SV) monitoring
0C	J1	Auto/manual transfer
0D	C1	Local/remote transfer
0E	E1	Local/external memory area transfer
0F	ZA	Control area No. transfer
10	G1	PID control/auto-tuning transfer
11	RA	Local mode/computer mode identification
12	SR	Operation execution (RUN)/STOP transfer
13	ON	Manipulated output value (MV)
14	S1	Set-value (SV)
15	A1	First alarm setting
16	A2	Second alarm setting
17	P1	Proportional band (Heating-side)
18	I1	Integral time
19	D1	Derivative time
1A	CA	Control response designation parameter
1B	P2	Cooling-side proportional band
1C	V1	Deadband
1D	НН	Setting change rate limit
1E	PB	PV bias
1F	F1	PV digital filter
20	DP	PV low input cut-off
21	RR	RS ratio
22	RB	RS bias

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description	
23	F2	RS digital filter	
24	ОН	Output limit (High limit)	
25	OL	Output limit (Low limit)	
26	OQ	Cooling output Min. ON time	
27	PH	Increase in output change rate limit	
28	PL	Decrease in output change rate limit	
29	IV	Upper ON/OFF action (A) differential gap	
2A	IW	Lower ON/OFF action (A) differential gap	
2B	OE	Manual output at abnormality	
2C	GB	AT bias	
2D	HA	First alarm differential gap	
2E	TD	First alarm timer setting	
2F	A3	Heater break alarm	
30	НВ	Second alarm differential gap	
31	TG	Second alarm timer setting	
32	LA	Analog output (AO) Specification selection	
33	HV	Analog output (AO) Scale high limit	
34	HW	Analog output (AO) Scale low limit	
35	V2	Neutral zone	
36	VH	Open/close output differential gap	
37	SY	Action selection at feedback resistance (FBR) input break	
38	DA	Bar-graph display selection	
39	XI	PV input type selection	
3A	AV	Input abnormality determination point (High limit)	
3B	AW	Input abnormality determination point (Low limit)	
3C	WH	Action selection at input abnormality (High limit)	
3D	WL	Action selection at input abnormality (Low limit)	
3E	XV	Input programmable range (High limit)	
3F	XW	Input programmable range (Low limit)	
40	XU	Decimal-point position selection	
41	XH	Square root extraction selection	
42	SH	Setting limit (High limit)	
43	SL	Setting limit (Low limit)	
44	XR	RS input type selection	
45	XL	SV tracking selection	
46	TO	Proportioning cycle (Heating-side)	
47	T1	Cooling-side proportioning cycle	
48	XE	Direct/reverse action selection	
49	XN	Hot/cold start selection	
4A	SX	Start determination point	
4B	XA	First alarm Action selection	
4C	NA	First alarm Energized/de-energized selection	
4D	OA	First alarm Action selection at input abnormality	
4E	WA	First alarm Hold action selection	
4F	XB	Second alarm Action selection	
50	NB	Second alarm Energized/de-energized selection	
51	OB	Second alarm Action selection at input abnormality	
52	WB	Second alarm Hold action selection	
53	LK	Set data lock level	
54	LL	area lock	
55	DH	Operation RUN/STOP display lock	
55	<i>D</i> 11	Operation Retributed display lock	

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.12 REX-D Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-003E.F	0000-003E	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

Address	Identifier	Description
00	M1	Measured-value(PV)
01	M2	First current transformer input value(CT1)
02	M3	Second current transformer input value(CT2)
03	AA	First alarm output
04	AB	Second alarm output
05	AC	Heater break alarm output 1
06	AD	Heater break alarm output 2
07	AE	Control loop break alarm
08	B1	Burnout
09	O1	Manipulated output 1(Heating-side)
0A	O2	Manipulated output 2(Cooling-side)
0B	MS	Set-value(SV)monitoring
0C	ER	Error data
0D	J1	AUTO/MAN transfer
0E	SR	RUN/STOP transter
0F	G1	PID/Auto-tuning transfer
10	S1	Set-value(SV1)
11	ON	Manipulated output value(MV)
12	S2	Step set-value(SV2)
13	A1	First alarm setting
14	A2	Second alarm setting
15	A3	First heater break alarm setting
16	A4	Second heater break alarm setting
17	PB	PV bias
18	HH	SV change rate limit
19	XA	First alarm action selection
1A	HA	First alarm differential gap
1B	TD	First alarm timer setting
1C	A5	Control loop break alarm setting
1D	V3	LBA deadband
1E	XB	Second alarm action selection
1F	HB	Second alarm differential gap setting
20	TG	Second alarm timer setting
21	TH	HBA delay timer
22	P1	Proportional band(Heating-side)

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
23	I1	Integral time
24	D1	Derivative time
25	W1	Anti-reset windup(ARW)
26	P2	Cooling-side proportional band
27	V1	Overlap/deadband
28	МН	ON/OFF action differential gap
29	MR	Manual reset
2A	XP	Fazzy
2B	Т0	Proportioning cycle(OUT1)
2C	ОН	Output limit(High-limit)
2D	OL	Output limit(Low-limit)
2E	XE	Direct/reverse action selection
2F	T1	Proportioning cycle(OUT2)
30	OI	Output limit(high-limit)(OUT2)
31	LA	Analog output specification selection
32	HV	High limit analog output range
33	HW	Low limit analog output range
34	XI	Input type selection
35	XV	Scaling high-limit
36	XW	Scaling low-limit
37	XU	Decimal-point position selection
38	PQ	AUTO/MAN function selection
39	DH	Control RUN/STOP display selection
3A	XR	Current transformer type selection
3B	XQ	Air cooling/water cooling selection
3C	GH	Auto-tuning(AT)differential gap
3D	WH	Action selection at input abnormality
3E	XO	Universal output selection

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.13 REX-G9 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-005E.1F	0000-005E	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

Address	Identifier	Description
00	M1	Measured-value (PV) input
01	AA	First alarm output
02	AB	Second alarm output
03	AC	Third alarm output
04	O1	Manipulated output1
05	B1	Burnout
06	B2	Feedback resistance (FBR) input burnout
07	S2	Remote setting value
08	M2	Feedback display
09	MS	Set-value (SV) monitoring
0A	J1	Auto/Manual transfer
0B	C1	Remote/Local transfer
0C	E1	Local/external memory area transfer
0D	ZA	Control area No. transfer
0E	G1	PID control/auto-tuning transfer
0F	RA	Computer mode/local mode identification
10	SR	Operation execution (RUN)/STOP transfer
11	ON	Manipulated output value
12	S1	Set-value (SV)
13	A1	First alarm setting
14	A2	Second alarm setting
15	A3	Third alarm setting
16	P1	Proportional band
17	I1	Integral time
18	D1	Derivative time
19	CA	Control response designation parameter
1A	PB	PV bias
1B	F1	PV digital filter
1C	VA	PV Moving average
1D	DP	PV low input cut-off
1E	НН	Setting change rate limiter (up)
1F	HL	Setting change rate limiter (down)
20	RR	RS ratio
21	RB	RS bias

Address	Identifier	Description	
22	F2	RS digital filter	
23	VB	RS Moving average	
24	ОН	Output limit (High limit)	
25	OL	Output limit (Low limit)	
26	PH	Increase in output change rate limit	
27	PL	Decrease in output change rate limit	
28	IV	Upper ON/OFF action (A) differential gap	
29	IW	Lower ON/OFF action (A) differential gap	
2A	DG	Derivative gain	
2B	OE	Manual output at abnormality	
2C	GB	AT bias	
2D	G2	AT cycles	
2E	HA	Alarm 1 hysteresis	
2F	НВ	Alarm 2 hysteresis	
30	НС	Alarm 3 hysteresis	
31	LA	Analog output 1 Specification selection	
32	HV	Analog output 1 Scale high limit	
33	HW	Analog output 1 Scale low limit	
34	LB	Analog output 2 Specification selection	
35	CV	Analog output 2 Scale high limit	
36	CW	Analog output 2 Scale low limit	
37	V2	Neutral zone	
38	VH	Open/close hysteresis	
39	SY	Action selection at feedback resistance (FBR) input break	
3A	TL	Display update cycle	
3B	DA	Deflection bar graph(display/non-display)	
3C	DB	RS bar graph(display/non-display)	
3D	DC	PV bar graph(display/non-display)	
3E	DE	Range of display in deflection bar graph	
3F	XI	PV input type selection	
40	AV	Input abnormality determination point (High limit)	
41	AW	Input abnormality determination point (Tigh limit)	
42	WH	Action selection at input abnormality (High limit)	
43	WL	Action selection at input abnormality (Ingli limit) Action selection at input abnormality (Low limit)	
44	XV	Input programmable range (High limit)	
45	XW	Input programmable range (Low limit)	
46	PU	PV input unit	
47	XU	Decimal-point position selection	
48	XH	Square root extraction selection	
49	SH	Setting limit (High limit)	
4A	SL	Setting limit (Tigh limit) Setting limit (Low limit)	
4A 4B	XR	RS input type selection	
4C	XL	SV tracking selection	
4C 4D	TO	Output cycles	
4E	XE	Direct/reverse action selection	
4E 4F	DT	Derivative cycle	
50	XN	Hot/Cold start selection	
51	XA	First alarm Action selection	
52	NA NA		
53		First alarm Energized/de-energized selection First alarm Action selection at input abnormality	
	OA WA	= -	
54	WA	First alarm Hold action selection	
55	XB	Second alarm Action selection	

Address	Identifier	Description
56	NB	Second alarm Energized/de-energized selection
57	OB	Second alarm Action selection at input abnormality
58	WB	Second alarm Hold action selection
59	XC	Third alarm Action selection
5A	NC	Third alarm Energized/de-energized selection
5B	OC	Third alarm Action selection at input abnormality
5C	WC	Third alarm Hold action selection
5D	JT	Power supply frequency
5E	LK	Setting lock No.

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.14 REX-P300 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.00-0078.1F	0000-0078	[L/H]	*1 *2 *3

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 32-bit device

Address	Identifier	Description
00	M1	Measured value(PV)monitoring
01	S1	Set value(SV)monitoring
02	O1	Manipulated output monitoring 1 (Heat side)
03	O2	Manipulated output monitoring 2 (Cool side)
04	AA	First alarm monitoring
05	AB	Second alarm monitoring
06	B1	Burnout
07	PS	Pattern No.
08	SN	Segment No.
09	T1	Time signal output No.1 status
0A	T2	Time signal output No.2 status
0B	Т3	Time signal output No.3 status
0C	T4	Time signal output No.4 status
0D	T5	Time signal output No.5 status
0E	Т6	Time signal output No.6 status
0F	T7	Time signal output No.7 status
10	Т8	Time signal output No.8 status
11	EO	Program end output
12	AC	OUT2 action output
13	AD	OUT3 action output
14	AE	OUT4 action output
15	ER	Error
16	TR	Segment remaining time
17	RT	No. of repeat execution times
18	ON	Manipulated output value(MV)
19	G1	PID/AT transfer
1A	XM	Operation mode
1B	EN	Program end status
1C	WT	Wait status
1D	НО	Hold status
1E	SK	Step function
1F	SM	Search function
20	LE	Segment level setting
21	TM	Segment time setting

Address	Identifier	Description
22	PE	Program end No.
23	RR	Setting of the number of program execution times
24	LP	Link pattern No.
25	ZW	Wait zone (For fall)
26	ZX	Wait zone (For rise)
27	ET	Pattern end output time
28	RE	Time signal output No.
29	SO	Start segment
2A	ТО	ON time
2B	SF	End Segment
2C	TF	OFF time
2D	S2	FIX set value
2E	PB	PV bias
2F	PR	PV ratio
30	PW	Level PID setting1
31	PX	Level PID setting2
32	PY	Level PID setting3
33	F1	Digital filter
34	DP	Low level cut-off point
35	A1	First alarm setting
36	A2	Second alarm setting
37	XA	First alarm action selection
38	XB	Second alarm action selection
39	HA	First alarm differential gap
3A	HB	Second alarm differential gap
3B	TD	First alarm timer
3C	TG	Second alarm timer
3D	NA	First alarm energized/de-energized selection
3E	NA NB	Second alarm energized/de-energized selection
3F	P1	Proportional band 1
40	P3	Proportional band 2
41	P5	-
42	P7	Proportional band 3 Proportional band 4
43	I1	-
43	I2	Integral time 1
45	I3	Integral time 2 Integral time 3
		-
46	I4	Integral time 4
47	D1	Derivative time 1 Derivative tiem 2
48	D2	Derivative tiem 2 Derivative tiem 3
49	D3	
4A	D4	Derivative tiem 4
4B	W1	Anti-reset windup 1(ARW)
4C	W2	Anti-reset windup 2(ARW)
4D	W3	Anti-reset windup 3(ARW)
4E	W4	Anti-reset windup 4(ARW)
4F	P2	Cool side proportional band 1
50	P4	Cool side proportional band 2
51	P6	Cool side proportional band 3
52	P8	Cool side proportional band 4
53	V1	Deadband/Overlap 1 / Control motor neutral zone 1
54	V2	Deadband/Overlap 2 / Control motor neutral zone 2
55	V3	Deadband/Overlap 3 / Control motor neutral zone 3

Address	Identifier	Description
56	V4	Deadband/Overlap 4 / Control motor neutral zone 4
57	XP	Fuzzy function 1
58	FW	Fuzzy function 2
59	FX	Fuzzy function 3
5A	FY	Fuzzy function 4
5B	TC	Output cycle 1 / Control motor time
5C	Т0	Output cycle 2
5D	ОН	Output limit(High limit) / Integrated output limit
5E	OL	Output limit(Low limit)
5F	XE	Direct/reverse action selection
60	KB	OUT2 action selection
61	A3	OUT2 set value
62	XC	OUT3 action selection
63	A4	OUT3 set value
64	XD	OUT4 action selection
65	A5	OUT4 set value
66	LA	Analog output selection
67	HV	Analog output scaling high limit
68	HW	Analog output scaling low limit
69	XI	Input type selection
6A	XV	Scale high limit
6B	XW	Scale low limit
6C	XU	Decimal point position
6D	SS	SV at program start
6E	X1	Control state at program end
6F	XN	Control output value during reset / Control state selection during reset
70	XK	Control input pattern entry method
71	XQ	Water cooling/air cooling selection at heat/cool control
72	PD	Start mode selection
73	GH	Autotuning(AT) differential gap
74	JT	Power frequency
75	B2	Action selection at burnout occurrence
76	WH	Action selection for abnormal PV input
77	XH	Selection of Use/Non-use of square root extraction function
78	PU	Setting time unit selection

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.15 REX-P250 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-0027.F	0000-0027	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured-value(PV)
01	S1	Set-value(SV)during operation
02	ON	Manipulated-value(MV)or Manual control output set-value
03	TR	Segment remaining time
04	RT	The number of program execution times
05	M2	Opening feedback input value or Current transformer input value
06	AA	Alarm 1 output
07	AB	Alarm 2 output
08	B1	Burnout
09	НО	Hold status
0A	EN	End status
0B	WT	Wait status
0C	T1	Time signal No.1 status
0D	T2	Time signal No.2 status
0E	Т3	Time signal No.3 status
0F	T4	Time signal No.4 status
10	XM	Operation mode
11	PS	Execution pattern
12	SN	Execution segment
13	RA	COMP/LOC identification
14	G1	AT/PID identification
15	TT	AT learning function
16	SK	Step function
17	S2	Set-value(SV)
18	PP	PID memory NO.
19	AP	Alarm memory NO.
1A	PQ	PID memory NO.
1B	AQ	Alarm memory NO.
1C	PB	PV bias
1D	HA	Alarm 1 hysteresis band
1E	НВ	Alarm 2 hysteresis band
1F	TC	Proportional cycle setting
20	F1	Digital filter
21	XN	Start mode selection
22	SS	Set-value(SV)selection at start[Program control]

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
23	ER	Error code
24	CL	Data all clear
25	TR	Segment remaining time
26	TR	Segment remaining time
27	TR	Segment remaining time

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.16 REX-AD Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-003B.F	0000-003B	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured-value(PV)
01	AA	First alarm monitor
02	AB	Second alarm monitor
03	AC	Third alarm monitor
04	AD	Fourth alarm monitor
05	AE	Fifth alarm monitor
06	AF	Sixth alarm monitor
07	AG	EXCEED monitor
08	B1	Burnout
09	ER	Error data
0A	HP	Peak hold monitor
0B	HQ	Bottom hold monitor
0C	TM	Time duration monitor
0D	HR	Hold reset
0E	IR	Interlock release
0F	A1	First alarm setting
10	A2	Second alarm setting
11	A3	Third alarm setting
12	A4	Fourth alarm setting
13	A5	Fifth alarm setting
14	A6	Sixth alarm setting
15	PB	PV bias
16	F1	Digital filter
17	XA	First alarm action selection
18	QA	First alarm interlock
19	NA	First alarm Energized/De-energized
1A	HA	First alarm differential gap
1B	TD	First alarm timer setting selection
1C	XB	Second alarm action selection
1D	QB	Second alarm interlock
1E	NB	Second alarm Energized/De-energized
1F	НВ	Second alarm differential gap
20	TG	Second alarm timer setting selection
21	XC	Third alarm action selection
22	QC	Third alarm interlock

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
23	NC	Third alarm Energized/De-energized
24	HC	Third alarm differential gap
25	TH	Third alarm timer setting selection
26	XD	Fourth alarm action selection
27	QD	Fourth alarm interlock
28	ND	Fourth alarm Energized/De-energized
29	HD	Fourth alarm differential gap
2A	TI	Fourth alarm timer setting selection
2B	XE	Fifth alarm action selection
2C	QE	Fifth alarm interlock
2D	NE	Fifth alarm Energized/De-energized
2E	HE	Fifth alarm differential gap
2F	TJ	Fifth alarm timer setting selection
30	XF	Sixth alarm action selection
31	QF	Sixth alarm interlock
32	NF	Sixth alarm Energized/De-energized
33	HF	Sixth alarm differential gap
34	TK	Sixth alarm timer setting selection
35	HV	Analog output high-limit set-value
36	HW	Analog output low-limit set-value
37	XI	Input type selection
38	XV	Scaling high-limit setting
39	XW	Scaling low-limit setting
3A	XU	Decimal point position selection
3B	TS	Time unit selection setting

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.17 REX-PG Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-0021.F	0000-0021	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured-value (PV)
01	AA	Alarm 1 monitor
02	AB	Alarm 2 monitor
03	B1	Burnout
04	ER	Error data
05	HP	Peak hold monitor
06	HQ	Bottom hold monitor
07	AZ	Auto 0
08	HR	Hold reset
09	IR	Alarm interlock release
0A	A1	First alarm setting
0B	A2	Second alarm setting
0C	IB	Operation selection when input break
0D	TL	Display time setting
0E	XA	First alarm Action selection
0F	QA	First alarm interlock function
10	NA	First alarm Energized/de-energized selection
11	HA	First alarm differential gap
12	TD	First alarm timer setting
13	XB	Second alarm Action selection
14	QB	Second alarm interlock function
15	NB	Second alarm Energized/de-energized selection
16	НВ	Second alarm differential gap
17	TG	Second alarm timer setting
18	HW	Low limit analog output range
19	HV	High limit analog output range
1A	TO	Analog output time setting
1B	XI	Input type selection
1C	GA	Gain setting
1D	PU	Pressure unit setting
1E	XU	Decimal-point position selection
1F	XW	Pressure display low limit setting
20	XV	Pressure display high limit setting
21	LI	Linearizing type selection

^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
- Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.18 AE500 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
Communication identifier	0000.0-0012.F	0000-0012	[L/H]	*1 *2

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured value (PV)
01	AA	Alarm 1 monitor
02	AB	Alarm 2 monitor
03	AC	Alarm 3 monitor
04	AD	Alarm 4 monitor
05	B1	Burnout
06	ER	Error code
07	A1	Alarm 1 setting
08	A2	Alarm 2 setting
09	A3	Alarm 3 setting
0A	A4	Alarm 4 setting
0B	HA	Alarm 1 differential gap setting
0C	НВ	Alarm 2 differential gap setting
0D	HC	Alarm 3 differential gap setting
0E	HD	Alarm 4 differential gap setting
0F	PB	PV bias
10	HV	Analog output scale high
11	HW	Analog output scale low
12	LK	Set data lock function

IMPORTANT

• Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.19 LE100 Series

This address can be specified as system data area.

Device	Bit Address	Word Address	bits	
Communication identifier	0000.0-0072.F	0000-0072	[L/H]	*1 *2

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

<Communication identifier list>

Address	Identifier	Description
00	M1	Measured value (PV)
01	AA	Output 1 status
02	AB	Output 2 status
03	AC	Output 3 status
04	AD	Output 4 status
05	AE	Output 5 status
06	AF	Output 6 status
07	AG	Output 7 status
08	AH	Output 8 status
09	B1	Burnout
0A	ER	Error code
0B	ID	ID data
0C	ID	ID data
0D	ID	ID data
0E	MS	Specific gravity monitor
0F	ML	Scale low monitor
10	MH	Scale high monitor
11	HP	Peak hold monitor
12	HQ	Bottom hold monitor
13	MW	Number of wafer processing times monitor
14	MZ	Amount of emptiness correction monitor
15	A1	Output 1 set value
16	A2	Output 2 set value
17	A3	Output 3 set value
18	A4	Output 4 set value
19	A5	Output 5 set value
1A	A6	Output 6 set value
1B	A7	Output 7 set value
1C	A8	Output 8 set value
1D	A9	Actual liquid output setting
1E	AZ	Emptiness adjustment
1F	WT	Number of wafer processing times
20	CW	Initializing the number of wafer processing times
21	HR	Hold reset
22	IR	Interlock release

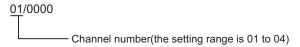
^{*2} When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.

Address	Identifier	Description
23	LK	Set data lock
24	IS	Default setting
25	EC	Error release
26	LU	Decimal point position selection
27	LT	Number of linearizing table setting
28	L0	Linearizing table setting 0
29	L1	Linearizing table setting 1
2A	L2	Linearizing table setting 2
2B	L3	Linearizing table setting 3
2C	L4	Linearizing table setting 4
2D	L5	Linearizing table setting 5
2E	L6	Linearizing table setting 6
2F	L7	Linearizing table setting 7
30	L8	Linearizing table setting 8
31	L9	Linearizing table setting 9
32	LA	Linearizing table setting 10
33	F1	Digital filter
34	XA	Output 1 type selection
35	DA	Output 1 deviation value setting
36	QA	Output 1 interlocking function selection
37	NA	Output 1 a/b contact selection
38	HA	Output 1 differential gap
39	TA	Output 1 timer setting
3A	XB	Output 2 type selection
3B	DB	Output 2 deviation value setting
3C	QB	Output 2 interlocking function selection
3D	NB	Output 2 a/b contact selection
3E	НВ	Output 2 differential gap
3F	ТВ	Output 2 timer setting
40	XC	Output 3 type selection
41	DC	Output 3 deviation value setting
42	QC	Output 3 interlocking function selection
43	NC	Output 3 a/b contact selection
44	HC	Output 3 differential gap
45	TC	Output 3 timer setting
46	XD	Output 4 type selection
47	DD	Output 4 deviation value setting
48	QD	Output 4 interlocking function selection
49	ND	Output 4 a/b contact selection
4A	HD	Output 4 differential gap
4B	TD	Output 4 timer setting
4C	XE	Output 5 type selection
4D	DE	Output 5 deviation value setting
4E	QE	Output 5 interlocking function selection
4F	NE	Output 5 a/b contact selection
50	HE	Output 5 differential gap
51	TE	Output 5 timer setting
52	XF	Output 6 type selection
53	DF	Output 6 deviation value setting
54	QF	Output 6 interlocking function selection
55	NF	Output 6 a/b contact selection
56	HF	Output 6 differential gap
50	111	Output o antioionnum Eup

Address	Identifier	Description
57	TF	Output 6 timer setting
58	XG	Output 7 type selection
59	DG	Output 7 deviation value setting
5A	QG	Output 7 interlocking function selection
5B	NG	Output 7 a/b contact selection
5C	HG	Output 7 differential gap
5D	TG	Output 7 timer setting
5E	XH	Output 8 type selection
5F	DH	Output 8 deviation value setting
60	QH	Output 8 interlocking function selection
61	NH	Output 8 a/b contact selection
62	НН	Output 8 differential gap
63	TH	Output 8 timer setting
64	HV	Monitor output high
65	HW	Monitor output low
66	EG	End specific gravity setting
67	SW	Number of wafer processing times setting
68	XX	Scale low
69	SG	Specific gravity setting
6A	J1	Scale 1 actual liquid setting
6B	J2	Scale 2 actual liquid setting
6C	J3	Correction on the low limit side by actual liquid 2
6D	J4	Correction on the high limit side by actual liquid 2
6E	UN	Unit setting
6F	SP	Specific gravity setting transfer
70	SS	Specific gravity correction function selection
71	DS	DI function selection
72	MM	Volume/level display selection

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.


6.20 SRZ (Z-TIO) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	01/0000.00 -01/00CF.1F	01/0000-01/00CF		*1 *2 *3*4
Communication identifier	02/0000.00 -02/00CF.1F	02/0000-02/00CF	[L/H]	
Communication identifier	03/0000.00 -03/00CF.1F	03/0000-03/00CF		
	04/0000.00 -04/00CF.1F	04/0000-04/00CF		

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 Some of the identifiers are for each channel, some are for each module. As for the identifiers which are for each channel, it is necessary to specified the channel number correctly. As for the identifiers which are for each module, the specified channel number is meaningless.

*4 32-bit device

<Communication identifier list>

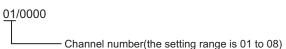
Address	Identifier	Description	Address	Identifier	Description
00	VR	ROM version	32	A7	Heater break alarm (HBA) set value
01	VR	ROM version	33	NE	Heater break determination point
02	M1	Measured value (PV)	34	NF	Heater melting determination point
03	AJ	Comprehensive event state	35	PB	PV bias
04	L0	Operation mode state monitor	36	F1	PV digital filter
05	ER	Error code	37	PR	PV ratio
06	O1	Manipulated output value (MV) monitor [heat-side]	38	DP	PV low input cut-off
07	O2	Manipulated output value (MV) monitor [cool-side]	39	RB	RS bias
08	M3	Current transformer (CT) input value monitor	3A	F2	RS digital filter
09	MS	Set value (SV) monitor	3B	RR	RS ratio
0A	S2	Remote setting (RS) input value monitor	3C	DV	Output distribution selection
0B	B1	Burnout state monitor	3D	DW	Output distribution bias
0C	AA	Event 1 state monitor	3E	DQ	Output distribution ratio
0D	AB	Event 2 state monitor	3F	T0	Proportional cycle time
0E	AC	Event 3 state monitor	40	VI	Minimum ON/OFF time of proportioning cycle
0F	AD	Event 4 state monitor	41	ON	Manual manipulated output value
10	AE	Heater break alarm (HBA) state monitor	42	RV	Area soak time stop function
11	Q1	Output state monitor	43	NG	EDS mode (for disturbance 1)
12	TR	Memory area soak time monitor	44	NX	EDS mode 2 (for disturbance 2)
13	UT	Integrated operating time monitor	45	NI	EDS value 1 (for disturbance 1)
14	Нр	Holding peak value ambient temperature monitor	46	NJ	EDS value 1 (for disturbance 2)
15	EM	Backup memory state monitor	47	NK	EDS value 2 (for disturbance 1)
16	ED	Logic output monitor 1	48	NM	EDS value 2 (for disturbance 2)
17	EE	Logic output monitor 2	49	NN	EDS transfer time (for disturbance 1)
18	G1	PID/AT transfer	4A	NO	EDS transfer time (for disturbance 2)
19	J1	Auto/Manual transfer	4B	NQ	EDS action time (for disturbance 1)
1A	C1	Remote/Local transfer	4C	NL	EDS action time (for disturbance 2)
1B	SR	RUN/STOP transfer	4D	NR	EDS action wait time (for disturbance 1)
1C	ZA	Memory area transfer	4E	NY	EDS action wait time (for disturbance 1)
1D	AR	Interlock release	4F	NT	EDS value learning times
1E	Al Al	Event 1 set value (EV1)	50	NU	EDS start signal
1F	A2	Event 2 set value (EV2)	51	EI	Operation mode
20	A3	Event 2 set value (EV2) Event 3 set value (EV3)	52	ST	Startup tuning (ST)
21	A3	Event 4 set value (EV4)	53	Y8	Automatic temperature rise learning
22	A5	Control loop break alarm (LBA) time	54	EF	Communication switch for logic
23	N1	LBA deadband	55	XI	Input type
	S1	Set value (SV)		PU	
24	P1	Proportional band [heat-side]	56 57	XU	Display unit Decimal point position
	II	Integral time [heat-side]		XV	
26		Derivative time [heat-side]	58		Input scale high
27	D1	, ,	59	XW	Input scale low
28	CA	Control response parameter	5A	AV	Input error determination point (high)
29	P2	Proportional band [cool-side]	5B	AW	Input error determination point (low)
2A	I2	Integral time [cool-side]	5C	BS	Burnout direction
2B	D2	Derivative time [cool-side]	5D	XH	Square root extraction
2C	V1	Overlap/Deadband	5E	E0	Output assignment (Logic output selection function)
2D	MR	Manual reset	5F	NA	Energized/De-energized (Logic output selection function)
2E	HH	Setting change rate limiter (up)	60	XA	Event 1 type
2F	HL	Setting change rate limiter (down)	61	FA	Event 1 channel setting
30	TM	Area soak time	62	WA	Event 1 hold action
31	LP	Link area number	63	LF	Event 1 interlock

Address	Identifier	Description	Address	Identifier	Description
64	HA	Event 1 differential gap	93	OL	Output limiter (low) [heat-side]
65	TD	Event 1 delay timer	94	PX	Output change rate limiter (up) [cool-side]
66	OA	Force ON of Event 1 action	95	PY	Output change rate limiter (down) [cool-side]
67	XB	Event 2 type	96	OX	Output limiter (high) [cool-side]
68	FB	Event 2 channel setting	97	OY	Output limiter (low) [cool-side]
69	WB	Event 2 hold action	98	GB	AT bias
6A	LG	Event 2 interlock	99	G3	AT cycles
6B	HB	Event 2 differential gap	9A	OP	Output value with AT turned on
6C	TG	Event 2 delay timer	9B	OQ	Output value with AT turned off
6D	OB	Force ON of Event 2 action	9C	GH	AT differential gap time
6E	XC	Event 3 type	9D	KC	Proportional band adjusting factor [heat-side]
6F	FC	Event 3 channel setting	9E	KD	Integral time adjusting factor [heat-side]
70	WC	Event 3 hold action	9F	KE	Derivative time adjusting factor [heat-side]
71	LH	Event 3 interlock	A0	KF	Proportional band adjusting factor [cool-side]
72	HC	Event 3 differential gap	A1	KG	Integral time adjusting factor [cool-side]
73	TE	Event 3 delay timer	A2	KH	Derivative time adjusting factor [cool-side]
74	OC	Force ON of Event 3 action	A3	P6	Proportional band limiter (high) [heat-side]
75	XD	Event 4 type	A4	P7	Proportional band limiter (low) [heat-side]
76	FD	Event 4 channel setting	A5	I6	Integral time limiter (high) [heat-side]
77	WD	Event 4 hold action	A6	I7	Integral time limiter (low) [heat-side]
78	LI	Event 4 interlock	A7	D6	Derivative time limiter (high) [heat-side]
79	HD	Event 4 differential gap	A8	D7	Derivative time limiter (low) [heat-side]
7A	TF	Event 4 delay timer	A9	P8	Proportional band limiter (high) [cool-side]
7B	OD	Force ON of Event 4 action	AA	P9	Proportional band limiter (low) [cool-side]
7C	XS	CT ratio	AB	I8	Integral time limiter (high) [cool-side]
7D	ZF	CT assignment	AC	I9	Integral time limiter (low) [cool-side]
7E	ND	Heater break alarm (HBA) type	AD	D8	Derivative time limiter (high) [cool-side]
7F	DH	Number of heater break alarm (HBA) delay times	AE	D9	Derivative time limiter (low) [cool-side]
80	XN	Hot/Cold start	AF	V2	Open/Close output neutral zone
81	SX	Start determination point	В0	SY	Action at feedback resistance (FBR)
		•			input error
82	XL	SV tracking	B1	FV	Feedback adjustment
83	OT	MV transfer function	B2	TN	Control motor time
84	XE	Control action	В3	OI	Integrated output limiter
85	PK	Integral/derivative time decimal point position	B4	VS	Valve action at STOP
86	KA	Derivative action	B5	KI	ST proportional band adjusting factor
87	KB	Undershoot suppression factor	B6	KJ	ST integral time adjusting factor
88	DG	Derivative gain	B7	KK	ST derivative time adjusting factor
89	IV	ON/OFF action differential gap (upper)	В8	SU	ST start condition
8A	IW	ON/OFF action differential gap (lower)	B9	Y7	Automatic temperature rise group
8B	WH	Action (high) at input error	BA	RT	Automatic temperature rise dead time
8C	WL	Action (low) at input error	BB	R2	Automatic temperature rise gradient data
8D	OE	Manipulated output value at input error	BC	NS	EDS transfer time decimal point position
8E	OF	Manipulated output value at STOP mode [heat-side]	BD	NV	Output average processing time for EDS
8F	OG	Manipulated output value at STOP mode [cool-side]	BE	NW	Responsive action trigger point for EDS
90	PH	Output change rate limiter (up) [heat-side]	BF	HU	Setting change rate limiter unit time
91	PL	Output change rate limiter (down) [heat-side]	C0	RU	Soak time unit
92	ОН	Output limiter (high) [heat-side]	C1	SH	Setting limiter (high)

Address	Identifier	Description	Address	Identifier	Description
C2	SL	Setting limiter (low)	С9	DY	Output distribution master channel module address
С3	TS	PV transfer function	CA	DZ	Output distribution master channel selection
C4	EA	Operation mode assignment 1 (Logic output selection function) Logic output 1 to 4	СВ	RL	Address of interacting modules
C5	EB	Operation mode assignment 2 (Logic output selection function) Logic output 5 to 8	CC	RM	Channel selection of interacting modules
C6	KM	SV select function	CD	RN	Selection switch of interacting modules
C7	MC	Remote SV function master channel module address	CE	X1	Control RUN/STOP holding setting
C8	MN	Remote SV function master channel selection	CF	ZX	Interval time

 Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.


6.21 SRZ (Z-DIO) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	01/0000.00 -01/001E.1F	01/0000-01/001E		
	02/0000.00 -02/001E.1F	02/0000-02/001E		*1 *2 *3*4
	03/0000.00 -03/001E.1F	03/0000-03/001E		
Communication identifier	04/0000.00 -04/001E.1F	04/0000-04/001E	(L/H)	
Communication identifier	05/0000.00 -05/001E.1F	05/0000-05/001E		
	06/0000.00 -06/001E.1F	06/0000-06/001E		
	07/0000.00 -07/001E.1F	07/0000-07/001E		
	08/0000.00 -08/001E.1F	08/0000-08/001E		

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 Some of the identifiers are for each channel, some are for each module. As for the identifiers which are for each channel, it is necessary to specified the channel number correctly. As for the identifiers which are for each module, the specified channel number is meaningless.

*4 32-bit device

<Communication identifier list>

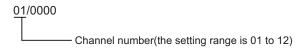
Address	Identifier	Description	Addre
00	VR	ROM version	10
01	VR	ROM version	11
02	L1	Digital input (DI) state 1	12
03	L6	Digital input (DI) state 2	13
04	Q2	Digital output (DO) state 1	14
05	Q3	Digital output (DO) state 2	15
06	ER	Error code	16
07	UT	Integrated operating time monitor	17
08	EM	Backup memory state monitor	18
09	SR	RUN/STOP transfer	19
0A	Q4	DO manual output 1	1A
0B	Q5	DO manual output 2	1B
0C	DO	DO output distribution selection	10
0D	O8	DO output distribution bias	10
0E	O9	DO output distribution ratio	1E
0F	V0	DO proportional cycle time	

Address	Identifier	Description
10	VJ	DO minimum ON/OFF time of
10	, ,	proportioning cycle
11	H2	DI function assignment
12	E1	Memory area setting signal
13	LQ	DO signal assignment module address 1
14	LR	DO signal assignment module address 2
15	LT	DO output assignment 1 [DO1 to DO4]
16	LX	DO output assignment 2 [DO5 to DO8]
17	NB	DO energized/de-energized
18	DD	DO output distribution master channel
10	ББ	module address
19	DJ	DO output distribution master channel
-,		selection
1A	OJ	DO manipulated output value (MV) at
	-	STOP mode
1B	D3	DO output limiter (high)
1C	D4	DO output limiter (low)
1D	X1	Control RUN/STOP holding setting
1E	ZX	Interval time

IMPORTANT

Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.


6.22 SRZ (Z-CT) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	01/0000.00 -01/001D.1F	01/0000-01/001D		
	02/0000.00 -02/001D.1F	02/0000-02/001D	000-02/001D	
	03/0000.00 -03/001D.1F	03/0000-03/001D		*1 *2 *3 *4
	04/0000.00 -04/001D.1F	04/0000-04/001D	[L/H] *	
	05/0000.00 -05/001D.1F	05/0000-05/001D		
Communication identifier	06/0000.00 -06/001D.1F	06/0000-06/001D		
Communication identifier	07/0000.00 -07/001D.1F	07/0000-07/001D [L]H] 08/0000-08/001D		
	08/0000.00 -08/001D.1F			
	09/0000.00 -09/001D.1F	09/0000-09/001D		
	10/0000.00 -10/001D.1F	10/0000-10/001D		
	11/0000.00 -11/001D.1F	11/0000-11/001D		
	12/0000.00 -12/001D.1F	12/0000-12/001D		

^{*1} There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.

- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 Some of the identifiers are for each channel, some are for each module. As for the identifiers which are for each channel, it is necessary to specified the channel number correctly. As for the identifiers which are for each module, the specified channel number is meaningless.

*4 32-bit device

<Communication identifier list>

Address	Identifier	Description	Address	Identifier	Description
00	VR	ROM version	0F	ВО	Heater overcurrent alarm selection
01	VR	ROM version	10	CX	Heater break alarm (HBA) interlock release
02	M4	Current transformer (CT) input value monitor	11	CY	Heater overcurrent alarm interlock release
03	M5	Load factor conversion CT monitor	12	LK	Set lock
04	AF	Heater break alarm (HBA) state monitor	13	BV	CT type
05	AG	Heater overcurrent alarm state monitor	14	XT	CT ratio (CT number of winds)
06	ER	Error code	15	DI	Number of heater break alarm (HBA) delay times
07	UT	Integrated operating time monitor	16	BW	Automatic setting factor for heater break alarm (HBA)
08	EM	Backup memory state monitor	17	В9	Automatic setting factor for heater over- current alarm
09	CJ	Automatic setting state monitor	18	BP	Determination current value for automatic setting
0A	ВТ	Heater break/Heater overcurrent alarm automatic setting selection	19	BQ	Automatic setting time
0B	BU	Automatic setting transfer	1A	BX	Module address assignments for CT input
0C	A8	Heater break alarm (HBA) set value	1B	BY	Module channel assignments for CT input
0D	BZ	Heater break alarm (HBA) selection	1C	IC	Load factor conversion method
0E	A6	Heater overcurrent alarm set value	1D	ZX	Interval time

IMPORTANT

Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

6.23 SRZ (Z-COM) Series

This address can be specified as system data area.

Device	Bit Address	Word Address	32 bits	Notes
	001/0000.00 -001/0123.1F 001/0000-001/0123			
	002/0000.00 -002/0123.1F	002/0000-002/0123		
Communication identifier	003/0000.00 -003/0123.1F	003/0000-003/0123	[L/H]	*1 *2 *3 *4
	:	:		
	191/0000.00 -191/0123.1F	191/0000-191/0123		
	192/0000.00 -192/0123.1F	192/0000-192/0123		

- *1 There are cases for which writing is not available depending on the device address. Check the identifying attributes of the external device's manual before use.
- *2 When bit is written, the indicator reads the corresponding word address of external device, assign a bit to the read word address, and return to the external device. There are cases when correct data cannot be written if the word address is written using a ladder program, while the indicator reads data of the external device and sends it back.
- *3 Some of the identifiers are for each channel, some are for each module, and some are for each SRZ unit. Only for the identifiers which are for each SRZ unit, the channel number is meaningless. For the identifiers which are for each channel and for each module, it is necessary to calculate the channel number according to the SRZ unit configuration correctly. The method of calculating the channel number is explained below. (Please refer to the manual of the External Device for more details.)
 - Date for each module (The channel number that is assigned regardless of module type)
 Channel number of communication = Module address setting + Offset value + 1
 - Data for each module (The channel number for every module type)
 Channel number of communication = Module address setting + 1
 - Data for each channel
 Channel number of communication = (Module address setting × Maximum channel number of the function module) + Channel number in the module

*4 32-bit device

<Communication identifier list>

Address	Identifier	Description	Address	Identifier	Description
00	VR	ROM version (Z-COM module)	21	VT	PLC scanning time
01	VR	ROM version (Z-COM module)	22	R5	PLC communication start time
02	VQ	ROM version (Function module)	23	RY	Method for setting the number of connected modules
03	VQ	ROM version (Function module)	24	RK	Slave mapping method
04	UT	Integrated operating time monitor (Z-COM module)	25	QY	Number of connected modules (Z-TIO module)
05	UV	Integrated operating time monitor (Function module)	26	QU	Number of connected modules (Z-DIO module)
06	ER	Error code (Z-COM module)	27	QO	Number of connected modules (Z-CT module)
07	EZ	Error code (Function module)	28	QA	Number of valid groups
08	EM	Backup memory state monitor (Z-COM module)	29	X2	Control RUN/STOP holding setting (Each unit)
09	CZ	Backup memory state monitor (Function module)	2A	M1	Measured value (PV)
0A	QM	System communication state	2B	AJ	Comprehensive event state
0B	QL	SRZ normal communication flag	2C	L0	Operation mode state monitor
0C	ES	PLC communication error code	2D	O1	Manipulated output value (MV) monito [heat-side]
0D	QN	Unit recognition flag	2E	O2	Manipulated output value (MV) monito [cool-side]
0E	QK	Monitor for the number of connected modules	2F	М3	Current transformer (CT) input value monitor
0F	SR	RUN/STOP transfer (Each unit)	30	MS	Set value (SV) monitor
10	SW	RUN/STOP transfer (Each module)	31	S2	Remote setting (RS) input value monitor
11	X1	Control RUN/STOP holding setting (Each module)	32	B1	Burnout state monitor
12	VK	Communication 1 protocol	33	AA	Event 1 state monitor
13	VL	Communication 1 communication speed	34	AB	Event 2 state monitor
14	VM	Communication 1 data bit configuration	35	AC	Event 3 state monitor
15	VN	Communication 1 interval time	36	AD	Event 4 state monitor
16	VP	Communication 2 protocol	37	AE	Heat break alarm (HBA) state monitor
17	VU	Communication 2 communication speed	38	Q1	Output state monitor
18	VW	Communication 2 data bit configuration	39	TR	Memory area soak time monitor
19	VX	Communication 2 interval time	3A	Нр	Holding peak value ambient temperatu monitor
1A	QV	Station number	3B	ED	Logic output monitor 1
1B	QW	PC number (CPU No.)	3C	EE	Logic output monitor 2
1C	QZ	Register type	3D	G1	PID/AT transfer
1D	QS	Register start number (High-order 4-bit)	3E	J1	Auto/Manual transfer
1E	QX	Register start number (Low-order 16-bit)	3F	C1	Remote/Local transfer
1F	QQ	System data address bias	40	ZA	Memory area transfer
20	QT	COM module link recognition time	41	AR	Interlock release

Address	Identifier	Description	Address	Identifier	Description
42	A1	Event 1 set value (EV1)	71	NR	EDS action wait time (for disturbance 1)
43	A2	Event 2 set value (EV2)	72	NY	EDS action wait time (for disturbance 2)
44	A3	Event 3 set value (EV3)	73	NT	EDS value learning times
45	A4	Event 4 set value (EV4)	74	NU	EDS start signal
46	A5	Control loop break alarm (LBA) time	75	EI	Operation mode
47	N1	LBA deadband	76	ST	Startup tuning (ST)
48	S1	Set value (SV)	77	Y8	Automatic temperature rise learning
49	P1	Proportional band [heat-side]	78	EF	Communication switch for logic
4A	I1	Integral time [heat-side]	79	XI	Input type
4B	D1	Derivative time [heat-side]	7A	PU	Display unit
4C	CA	Control response parameter	7B	XU	Decimal point position
4D	P2	Proportional band [cool-side]	7C	XV	Input scale high
4E	I2	Integral time [cool-side]	7D	XW	Input scale low
4F	D2	Derivative time [cool-side]	7E	AV	Input error determination point (high)
50	V1	Overlap/Deadband	7F	AW	Input error determination point (low)
51	MR	Manual reset	80	BS	Burnout direction
52	НН	Setting change rate limiter (up)	81	XH	Square root extraction
53	HL	Setting change rate limiter (down)	82	E0	Output assignment (Logic output selection function)
54	TM	Area soak time	83	NA	Energized/De-energized (Logic output selection function)
55	LP	Link area number	84	XA	Event 1 type
56	A7	Heater break alarm (HBA) set value	85	FA	Event 1 channel setting
57	NE	Heat break determination point	86	WA	Event 1 hold action
58	NF	Heater melting determination point	87	LF	Event 1 interlock
59	PB	PV bias	88	HA	Event 1 differential gap
5A	F1	PV digital filter	89	TD	Event 1 delay timer
5B	PR	PV ratio	8A	OA	Force ON of Event 1 action
5C	DP	PV low input cut-off	8B	XB	Event 2 type
5D	RB	RS bias	8C	FB	Event 2 channel setting
5E	F2	RS digital filter	8D	WB	Event 2 hold action
5F	RR	RS ratio	8E	LG	Event 2 interlock
60	DV	Output distribution selection	8F	HB	Event 2 differential gap
61	DW	Output distribution bias	90	TG	Event 2 delay timer
62	DQ	Output distribution ratio	91	OB	Force ON of Event 2 action
63	Т0	Proportional cycle time	92	XC	Event 3 type
64	VI	Minimum ON/OFF time of proportioning cycle	93	FC	Event 3 channel setting
65	ON	Manual manipulated output value	94	WC	Event 3 hold action
66	RV	Area soak time stop function	95	LH	Event 3 interlock
67	NG	EDS mode (for disturbance 1)	96	HC	Event 3 differential gap
68	NX	EDS mode (for disturbance 2)	97	TE	Event 3 delay timer
69	NI	EDS value 1 (for disturbance 1)	98	OC	Force ON of Event 3 action
6A	NJ	EDS value 1 (for disturbance 2)	99	XD	Event 4 type
6B	NK	EDS value 2 (for disturbance 1)	9A	FD	Event 4 channel setting
6C	NM	EDS value 2 (for disturbance 2)	9B	WD	Event 4 hold action
6D	NN	EDS transfer time (for disturbance 1)	9C	LI	Event 4 interlock
6E	NO	EDS transfer time (for disturbance 2)	9D	HD	Event 4 differential gap
6F	NQ	EDS action time (for disturbance 1)	9E	TF	Event 4 delay timer

Address	Identifier	Description	Address	Identifier	Description
A0	XS	CT ratio	C8	P7	Proportional band limiter (low) [heat-side]
A1	ZF	CT assignment	C9	I6	Integral time limiter (high) [heat-side]
A2	ND	Heater break alarm (HBA) type	CA	I7	Integral time limiter (low) [heat-side]
A3	DH	Number of heater break alarm (HBA) delay times	СВ	D6	Derivative time limiter (high) [heat-side]
A4	XN	Hot/Cold start	CC	D7	Derivative time limiter (low) [heat-side]
A5	SX	Start determination point	CD	P8	Proportional band limiter (high) [cool-side]
A6	XL	SV tracking	CE	P9	Proportional band limiter (high) [cool-side]
A7	OT	MV transfer function	CF	I8	Integral time limiter (high) [cool-side]
A8	XE	Control action	D0	I9	Integral time limiter (low) [cool-side]
A9	PK	Integral/derivative time decimal point position	D1	D8	Derivative time limiter (high) [cool-side]
AA	KA	Derivative action	D2	D9	Derivative time limiter (low) [cool-side]
AB	KB	Undershoot suppression factor	D3	V2	Open/Close output neutral zone
AC	DG	Derivative gain	D4	SY	Action at feedback resistance (FBR) input error
AD	IV	ON/OFF action differential gap (upper)	D5	FV	Feedback adjustment
AE	IW	ON/OFF action differential gap (lower)	D6	TN	Control motor time
AF	WH	Action (high) at input error	D7	OI	Integrated output limiter
В0	WL	Action (low) at input error	D8	VS	Valve action at STOP
B1	OE	Manipulated output value at input error	D9	KI	ST proportional band adjusting factor
B2	OF	Manipulated output value at STOP mode [heat-side]	DA	KJ	ST integral time adjusting factor
В3	OG	Manipulated output value at STOP mode [cool-side]	DB	KK	ST derivative time adjusting factor
B4	PH	Output change rate limiter (up) [heat-side]	DC	SU	ST start condition
B5	PL	Output change rate limiter (down) [heat-side]	DD	Y7	Automatic temperature rise group
В6	ОН	Output limiter (high) [heat-side]	DE	RT	Automatic temperature rise dead time
В7	OL	Output limiter (low) [heat-side]	DF	R2	Automatic temperature rise gradient data
В8	PX	Output change rate limiter (up) [cool-side]	E0	NS	EDS transfer time decimal point position
В9	PY	Output change rate limiter (down) [cool-side]	E1	NV	Output average processing time for EDS
BA	OX	Output limiter (high) [cool-side]	E2	NW	Responsive action trigger point for EDS
BB	OY	Output limiter (low) [cool-side]	E3	HU	Setting change rate limiter unit time
BC	GB	AT bias	E4	RU	Soak time unit
BD	G3	AT cycles	E5	SH	Setting limiter (high)
BE	OP	Output value with AT turned on	E6	SL	Setting limiter (low)
BF	OQ	Output value with AT turned off	E7	TS	PV transfer function
C0	GH	AT differential gap time	E8	EA	Operation mode assignment 1 (Logic output selection function) Logic output 1 to 4
C1	KC	Proportional band adjusting factor [heat-side]	E9	EB	Operation mode assignment 2 (Logic output selection function) Logic output 5 to 8
C2	KD	Integral time adjusting factor [heat-side]	EA	KM	SV select function
СЗ	KE	Derivative time adjusting factor [heat-side]	EB	MC	Remote SV function master channel module address
C4	KF	Proportional band adjusting factor [cool-side]	EC	MN	Remote SV function master channel selection
CF	KG	Integral time adjusting factor [cool-side]	ED	DY	Output distribution master channel module address
C5					
C6	KH	Derivative time adjusting factor [cool-side]	EE	DZ	Output distribution master channel selection

Address	Identifier	Description	Address	Identifier	Description
F0	RM	Channel selection of interacting modules	10A	VF	Z-DIO Interval time
F1	RN	Selection switch of interacting modules	10B	M4	Current transformer (CT) input value monitor
F2	VG	TIO Interval time	10C	M5	Load factor conversion CT monitor
F3	L1	Digital input (DI) state 1	10D	AF	Heater break alarm (HBA) state monitor
F4	L6	Digital input (DI) state 2	10E	AG	Heater overcurrent alarm state monitor
F5	Q2	Digital output (DO) state 1	10F	CJ	Automatic setting state monitor
F6	Q3	Digital output (DO) state 2	110	ВТ	Heater break/Heater overcurrent alarm automatic setting selection
F7	Q4	DO manual output 1	111	BU	Automatic setting transfer
F8	Q5	DO manual output 2	112	A8	Heater break alarm (HBA) set value
F9	DO	DO output distribution selection	113	BZ	Heater break alarm (HBA) selection
FA	O8	DO output distribution bias	114	A6	Heater overcurrent alarm set value
FB	O9	DO output distribution ratio	115	ВО	Heater overcurrent alarm selection
FC	V0	DO proportional cycle time	116	CX	Heater break alarm (HBA) interlock release
FD	VJ	DO minimum ON/OFF time of proportioning cycle	117	CY	Heater overcurrent alarm interlock release
FE	H2	DI function assignment	118	LK	Set lock
FF	E1	Memory area setting signal	119	BV	CT type
100	LQ	DO signal assignment module address 1	11A	XT	CT ratio (CT number of winds)
101	LR	DO signal assignment module address 2	11B	DI	Number of heater break alarm (HBA) delay times
102	LT	DO output assignment 1 [DO1 to DO4]	11C	BW	Automatic setting factor for heater break alarm (HBA)
103	LX	DO output assignment 2 [DO5 to DO8]	11D	В9	Automatic setting factor for heater over- current alarm
104	NB	DO energized/de-energized	11E	BP	Determination current value for automatic setting
105	DD	DO output distribution master channel module address	11F	BQ	Automatic setting time
106	DJ	DO output distribution master channel selection	120	BX	Module address assignments for CT input
107	OJ	DO manipulated output value (MV) at STOP mode	121	BY	Module channel assignments for CT input
108	D3	DO output limiter (high)	122	IC	Load factor conversion method
109	D4	DO output limiter (low)	123	VH	CT Interval time

• Setting "Use system data area" to GP-Pro EX system area result in improper operation. Do not set "Use system data area."

- System area setting that can be used for the temperature controller is reading area size only. Please refer to the GP-Pro EX Reference Manual for system data area.
 - Cf. GP-Pro EX Reference Manual "Appendix 1.4 LS Area (Direct Access Method)"
- Please refer to the precautions on manual notation for icons in the table.
 - "Manual Symbols and Terminology"
- Even if non-existing address is used, there are cases when read error is not indicated. In this case, zero (0) is kept for read out data. On the other hand, writing error is indicated.

7 Device Code and Address Code

Use device code and address code when you select "Device Type & Address" for the address type in data displays.

7.1 CB Series

Device	Device Name	Device Code (HEX)	Address Code	
Communication identifier	-	0080	Word Address	

7.2 FB Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.3 HA Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.4 MA Series

Device	Device Name	Device Code (HEX)	Address Code	
Communication identifier	-	0080	Word Address	

7.5 SRV Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.6 SRX Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.7 SA Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.8 SR Mini HG(H-PCP-A/B) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
	-	01/	0080	
	-	02/	0180	
	-	03/	0280	
	-	04/	0380	
	-	05/	0480	
	-	06/	0580	
	-	07/	0680	
	-	08/	0780	
	-	09/	0880	
Communication	-	10/	0980	Word Address
identifier	-	11/	0A80	word Address
	-	12/	0B80	
	-	13/	0C80	
	-	14/	0D80	
	-	15/	0E80	
	-	16/	0F80	
	-	17/	1080	
	-	18/	1180	
	-	19/	1280	
	-	20/	1380	

7.9 SR Mini HG(H-PCP-J) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
	-	01/	0080	
	-	02/	0180	
	-	03/	0280	
	-	04/	0380	
	-	05/	0480	
	-	06/	0580	
	-	07/	0680	
	-	08/	0780	
	-	09/	0880	
Communication	-	10/	0980	Word Address
identifier	-	11/	0A80	Word Address
	-	12/	0B80	
	-	13/	0C80	
	-	14/	0D80	
	-	15/	0E80	
	-	16/	0F80	
	-	17/	1080	
	-	18/	1180	
	-	19/	1280	
	-	20/	1380	

7.10 REX-F9000 Series

	Device	Device Name	Device Code (HEX)	Address Code
Comm	unication identifier	-	0080	Word Address

7.11 REX-F Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.12 REX-D Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.13 REX-G9 Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.14 REX-P300 Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.15 REX-P250 Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.16 REX-AD Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.17 REX-PG Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.18 AE500 Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.19 LE100 Series

Device	Device Name	Device Code (HEX)	Address Code
Communication identifier	-	0080	Word Address

7.20 SRZ (Z-TIO) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
Communication identifier	-	01/	0080	
	-	02/	0180	Word Address
	-	03/	0280	Word Address
	-	04/	0380	

7.21 SRZ (Z-DIO) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
	-	01/	0080	
	-	02/	0180	
Communication identifier	-	03/	0280	
	-	04/	0380	Word Address
	-	05/	0480	word Address
	-	06/	0580	
	-	07/	0680	
	-	08/	0780	

7.22 SRZ (Z-CT) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
	-	01/	0080	
	-	02/	0180	
	-	03/	0280	Word Address
	-	04/	0380	
	-	05/	0480	
Communication identifies	-	06/	0580	
Communication identifier	-	07/	0680	
	-	08/	0780	
	-	09/	0880	
	-	10/	0980	
	-	11/	0A80	
	-	12/	0B80	

7.23 SRZ (Z-COM) Series

Device	Device Name	Channel No.	Device Code (HEX)	Address Code
	-	001/	0080	
	-	002/	0180	
	-	003/	0280	- Word Address
	-	004/	0380	
	-	005/	0480	
	-	006/	0580	
Communication identifier	-	007/	0680	
Communication identifier	-	008/	0780	
	-	009/	0880	
	-	010/	0980	
	-	011/	0A80	
	:	:	:	
	-	191/	BE80	
	-	192/	BF80	

8 Error Messages

Error messages are displayed on the screen of Display as follows: "No.: Device Name: Error Message (Error Occurrence Area)". Each description is shown below.

Item	Description		
No.	Error No.		
Device Name	Name of External Device where error occurs. Device name is a title of External Device set with GP-Pro EX.((Initial value [PLC1])		
Error Message	Displays messages related to the error which occurs.		
	Displays IP address or device address of External Device where error occurs, or error codes received from External Device.		
Error Occurrence Area	 NOTE IP address is displayed such as "IP address (Decimal): MAC address (Hex)". Device address is displayed such as "Address: Device address". Received error codes are displayed such as "Decimal [Hex]". 		

Display Examples of Error Messages

"RHAA035: PLC1: Error has been responded for device write command (Error Code: 2 [02H])"

- Refer to your External Device manual for details on received error codes.
- Refer to "When an error is displayed (Error Code List)" in "Maintenance/Troubleshooting Manual" for details on the error messages common to the driver.

■ Error Codes Unique to External Device

Error No.	Error Message	Description
RHxx128	(Node Name): The Setting value for identifier(identifier) is illegal. Please check the controller manuals.	Appears if the number entered exceeds the allowable number of digits.
RHxx129	(Node Name):The channel number (number) of identifier (identifier) does not exist in SRZ unit, please check it again.	Appears if an identifier that does not exist has been used.